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Abstract. The Hecke algebras for all symmetric groups taken together form a braided monoidal
category that controls all quantum link invariants of type A and, by extension, the standard canon

of topological quantum field theories in dimension 3 and 4. Here we provide the first categorification

of this Hecke braided monoidal category, which takes the form of an E2-monoidal (∞, 2)-category
whose hom-(∞, 1)-categories are k-linear, stable, idempotent-complete, and equipped with Z-actions.
This categorification is designed to control homotopy-coherent link homology theories and to-be-
constructed topological quantum field theories in dimension 4 and 5.

Our construction is based on chain complexes of Soergel bimodules, with monoidal structure given

by parabolic induction and braiding implemented by Rouquier complexes, all modelled homotopy-
coherently. This is part of a framework which allows to transfer the toolkit of the categorification

literature into the realm of ∞-categories and higher algebra. Along the way, we develop families of

factorization systems for (∞, n)-categories, enriched ∞-categories, and ∞-operads, which may be of
independent interest.

As a service aimed at readers less familiar with homotopy-coherent mathematics, we include a

brief introduction to the necessary ∞-categorical technology in the form of an appendix.
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1. Introduction

1.1. Overview. Braided monoidal categories of representations, particularly quantum group repre-
sentations, serve as a powerful framework for understanding invariants of knots, links, and tangles. Via
skein theory [Wal06; BK01; MW12] or (relatedly) factorization homology [AF15; AFR18], such braided
monoidal categories are also at the heart of 3- and 4-dimensional topological quantum field theories,
such as those by Witten–Reshetikhin–Turaev [Wit89; RT91] and Crane–Yetter–Kauffman [CKY97].

Following the paradigm of [CF94], our work is motivated by the desire to construct higher-dimensional
TQFTs by categorifying these theories. To this end, we will provide a construction of a “categorified
braided monoidal category”, which we believe encompasses all the necessary data to form the basis for
future constructions of 4- and 5-dimensional analogs, respectively, of Witten–Reshetikhin–Turaev and
Crane–Yetter–Kauffman theories of Lie type A, see also [MWW22; Str23] and references therein.

We begin our discussion in the decategorified context. The Reshetikhin–Turaev link invariants
[RT90] give an interpretation of the Jones polynomial [Jon85] in terms of morphisms in the braided
monoidal category of representations of quantum sl2. In fact, all of the Reshetikhin–Turaev invariants
of type A are controlled via Schur–Weyl duality by a single braided monoidal categoryH, just as the slN
link polynomials are specializations of the HOMFLYPT link invariant. Recall for n ∈ N0 := {0, 1, 2, . . .}
the Hecke algebra Hn, which is a quotient of the group algebra over Z[q±1] of the Artin braid group
Brn for the symmetric group Sn. The braided monoidal category H consists of the following data:

(1) The objects are given by natural numbers n ∈ N0.
(2) The endomorphism algebra of each object n ∈ H is Hn. All other hom-sets are trivial.
(3) The monoidal structure is given on objects by addition, i.e. m⊗n := m+n, and on morphism

as the map Hm ×Hn → Hm+n corresponding to the parabolic subgroup Sm × Sn ↪→ Sm+n.

(4) The braiding—a natural isomorphism m ⊗ n ∼−→ n ⊗ m for each m,n ∈ H—is given by the
image in EndH(m+ n) := Hm+n of the positive (m,n)-shuffle braid in Brm+n.

In the pioneering work [Kho00], Khovanov defined a homology theory for knots and links that
categorifies the Jones polynomial, leading to a plethora of categorifications of many other polynomials
invariants; see e.g. [Kho06b] for a survey. Despite the diverse flavors and contexts of these constructions
(e.g. involving perverse or coherent sheaves, matrix factorizations, symplectic geometry, Lie theory, and
diagrammatic calculus), these categorifications are all—whether explicitly, implicitly, or a posteriori—
shadows of a universal categorification involving Soergel bimodules [Soe92]; see [Str23]. Specifically,
there is a monoidal additive category Sbimn of Soergel bimodules, which categorifies the Hecke algebra
Hn, i.e. whose split Grothendieck ring is Hn. Concretely, Sbimn is a certain full additive subcategory
of the category of graded bimodules of the polynomial algebra Rn := k[x1, . . . , xn] over a Q-algebra
k with each xi in degree 2. The Z-action by grading shift categorifies the Z[q±1]-action on Hn. The
image of braids in Hn can only be categorified to objects in the (monoidal) bounded chain homotopy
category Kb(Sbimn) of Sbimn, the so called Rouquier complexes [Rou06], see Section 2.2.

The natural next step is to assemble these categorifications into a “categorified braided monoidal
category”, in which categorified braid invariants can be seen as morphisms. Our main Theorems
A and B yield this as a consequence. Namely, they provide a braided monoidal 2-category H—more
precisely, an E2-monoidal (2, 2)-category—which decategorifies to H upon taking Grothendieck groups.

(1) The objects are given by natural numbers n ∈ N0.
(2) The endomorphism monoidal category of each object n ∈ H is Kb(Sbimn). All other hom-

categories are trivial.
(3) The monoidal structure is given on objects by addition, i.e. m⊗n := m+n, and on morphism

by a parabolic induction functor Kb(Sbimm)×Kb(Sbimn)→ Kb(Sbimm+n).

(4) The braiding isomorphism m⊗n ∼−→ n⊗m is given by the Rouquier complex in Kb(Sbimm+n)
corresponding to the (m,n)-shuffle braid in Brm+n.
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In fact, we go much further: we work in a homotopy-theoretic context based on higher algebra
in the sense of Lurie [Lur09; Lur17] and construct a braided monoidal (∞, 2)-category1 Kb

loc(Sbim);
a truncation of which recovers the braided monoidal 2-category H described above. Explicitly, the
hom triangulated categories Kb(Sbimn) are replaced by stable ∞-categories Kb(Sbimn) of chain com-
plexes, chain maps and chain homotopies with the full hierarchy of higher homotopies. In contrast to
Kb(Sbimn), using the stable ∞-categories Kb(Sbimn) has an essentially advantage, which we crucially
use in the construction of Kb

loc(Sbim) and its braided monoidal structure. Namely, Kb has a universal
property: It constructs the free idempotent-complete stable ∞-category on an idempotent-complete
additive category, see Section 3.4.

The braided monoidal (∞, 2)-categoryKb
loc(Sbim) yields, in the spirit of Rouquier [Rou17], a suitable

derived setting for defining invariants not just of braids but also of braid cobordisms with their isotopies
and higher isotopies. Hints of such (coherent) braided monoidal 2-categories from link homology have
appeared in the literature, see e.g. [MR20]2.

A further motivation for such a derived setting, and for working∞-categorically comes from TQFTs:
passing from the triangulated categories Kb(Sbimn) to their underlying stable∞-categories Kb(Sbimn)
yields better finiteness properties. These finiteness properties can be essential for extending TQFTs
to manifolds of higher dimensions, and for ensuring that the resulting invariants are small enough
to have well-defined decategorifications. See [MWW23, Thm. 1.5 and § 4.7] for an example of this
phenomenon.

1.2. Monoidality theorem. Our first result is an upgrade of H to a monoidal (∞, 2)-category whose
hom-∞-categories are k-linear, stable, idempotent-complete, and equipped with a Z-action given by
the grading shift action on Kb(Sbimn).

To formulate the result, we let stk denote the ∞-category of small stable idempotent-complete k-
linear ∞-categories3. Let stBZ

k be the ∞-category Fun(BZ, stk) of such ∞-categories equipped with
an additional compatible Z-action. Then, Day convolution4 induces a symmetric monoidal structure
on stBZ

k , and in turn on the ∞-category Cat[stBZ
k ] of small ∞-categories enriched in stBZ

k in the sense
of Gepner-Haugseng [GH15].

Theorem A (Proposition 6.4.2). There is a monoidal (∞, 2)-category Kb
loc(Sbim) with objects labelled

by natural numbers n ∈ N0 and whose endomorphim ∞-categories are the k-linear, stable, idempotent-
complete ∞-categories Kb(Sbimn) of chain complexes of Soergel bimodules, with a Z-action by grad-
ing shift. More precisely, Kb

loc(Sbim) defines an E1-algebra in the symmetric monoidal ∞-category
Cat[stBZ

k ].

The (∞, 2)-category Kb
loc(Sbim) from Theorem A is constructed in Section 6 via certain enriched

variants of Morita (∞, 2)-categories developed in Section 4 following [Lur17], see also [Hau17; JS17].

1.3. Braiding theorem. To motivate our main theorem, recall that braided categories of quantum
group representations do not exist in isolation: Rather, they come equipped with forgetful fiber functors
to the category of vector spaces, carrying representations to their underlying vector spaces. Likewise,
our monoidal (∞, 2)-category Kb

loc(Sbim) from Theorem A comes equipped with a monoidal ‘fiber
functor’, see (6.9), more precisely with a morphism in AlgE1

(Cat[stBZ
k ]) of the form

Hloc : K
b
loc(Sbim)→ stBZ

k .

1We refer the reader to Appendix A for a brief introduction to ∞-categories.
2Indeed, as mentioned in [MR20], such a construction “requires working in a suitable homotopical setting (A∞-

or ∞-categories), and this creates technical complications for the full construction of a braided monoidal 2-categorical
structure”, also see [Rou19].

3Such ∞-categories can be modelled by small pretriangulated idempotent-complete k-linear dg-categories [Coh16].
4We stress the distinction from the pointwise symmetric monoidal structure; Day convolution uses the symmetric

monoidal structure of BZ.



A BRAIDED MONOIDAL (∞, 2)-CATEGORY OF SOERGEL BIMODULES 5

In particular, here stk plays the role of a 2-categorical version of the category of vector spaces. Hence
stBZ

k = Fun(BZ, stk) may be thought of as 2-vector spaces equipped with a Z-action. The Day con-
volution symmetric monoidal structure on stBZ

k may be interpreted as being the natural convolution
structure induced by thinking of these as 2-vector spaces graded by the abelian Lie group U(1) ≃ BZ.5

Homwise, the functor Hloc is induced by the functors Kb(Sbimn) → D(Rn
grbmodRn

) which send
chain complexes of Soergel bimodules to their corresponding objects in the derived ∞-category of the
abelian category of graded Rn-bimodules. They then act as morphisms in stBZ

k between certain stable
∞-categories of graded Rn-modules.

Theorem B (Corollary 8.2.2). There exists a unique braided monoidal (i.e., E2-algebra) structure on
Kb

loc(Sbim) ∈ Cat[stBZ
k ] that enhances its monoidal structure and satisfies the following conditions.

(1) The fiber functor Hloc : K
b
loc(Sbim)→ stBZ

k is braided monoidal.

(2) The braiding 1 ⊗ 1
∼−→ 1 ⊗ 1 in Kb

loc(Sbim) admits an equivalence with the Rouquier complex
F (σ) ∈ EndKb

loc(Sbim)(2) := Kb(Sbim2) corresponding to the braid group generator σ ∈ Br2.

We emphasize that the uniqueness statement of Theorem B must be interpreted in the ∞-categorical
sense, where the notion of “unique up to unique isomorphism” from classical category theory is gener-
alized to the notion of being parametrized by a contractible ∞-groupoid.

We prove Theorem B in obstruction-theoretic terms, as explained further in Section 1.4. In fact,
Theorem B is a special case of a more general result, namely Theorem 8.2.1, that applies to a general
homwise additive 2-category (in place of Sbim) and a general stBZ

k -enriched ∞-category (in place of
stBZ

k ).
The braided monoidal 2-category H is recovered in Remark 8.2.3 from the braided monoidal (∞, 2)-

category Kb
loc(Sbim) by taking its homotopy 2-category h2(K

b
loc(Sbim)) obtained by quotienting out all

3-morphisms, see Section 5.4, i.e. by applying H0 to its 2-hom-objects (which are objects of the derived
∞-category of k). This is the sense in which Theorem A and Theorem B enhance the 2-categorical
statement from Section 1.1.

1.4. Context and proof outline for the braiding theorem. Here we further contextualize Theo-
rem B while discussing key aspects of its setup and proof.

1.4.1. Braided monoidal 2-categories and their generalizations. The problem of finding the right defini-
tion of braided monoidal (even ordinary) 2-categories has a long history, going back to [KV94a; KV94b;
BN96], see [Sch09] for a survey. One motivation [BD95] was the construction of surface invariants in
4-manifolds, in particular 2-knots, just like braided monoidal 1-categories are related to link invariants.
A challenge hereby was the specification of the extra data required for a braiding on a 2-category, for
example with respect to the naturality of the braiding—which is not a property , but extra structure.

An even larger challenge is the construction of interesting concrete examples of braided monoidal
2-categories, at least as rich as the theory of braided monoidal categories built from quantum groups.
First hints of such a landscape came into view with the invention of Khovanov homology and its various
associated invariants of tangles and tangle cobordisms [Kho06a]. However, the idea of extracting a
braided monoidal 2-category from these invariants, see e.g. [BL11], turned out to be hard. Indeed, this
idea drove the study of functoriality properties of categorified link and tangle invariants with respect
to tangle cobordisms. At the state of the art, the most well-behaved link homology theories assign
homotopy classes of chain maps to isotopy classes of tangle cobordisms. As discussed in [MWW22, § 6],
this is sufficient to satisfy the (classical) axioms for a braided monoidal 2-category in a toy model that
is combinatorial and discrete up to the level of 1-morphisms and truncated at the level of 2-morphisms.

5This is directly analogous to the classical situaton in which Rep(Z) ≃ Fun(U(1),Vec) has two canonical symmetric
monoidal structures: a pointwise one, and one arising from Day convolution.
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It is however desirable to go beyond such a toy model, so that the 2-hom-objects are no longer just
sets or vector spaces, but are of a more homological nature: higher homotopies give invariants of higher
isotopies between braids and links. Indeed, systematically incorporating such higher homotopies in link
homology theories is also highly relevant beyond the goal of constructing an enhancement of a braided
monoidal 2-category, e.g. towards skein algebra categorification [QW21, Discussion after Conjecture
1.8], cabling operations [GHW22, § 1.3], as well as wrapping and flatting functors [GW23, § 6.4], [Eli18;
MMV24].

To formulate answers to such questions, the classical axioms for braided monoidal 2-categories are
no longer sufficient: For example the Rouquier complexes corresponding to braid group generators
satisfy the braid relation up to homotopy equivalence, [Rou06]. These equivalences must be provided
as additional data, which then should be subject to further coherence conditions, requiring higher
homotopies ad infinitum. Even worse, the compatibilities to be checked at each level quickly explode—
in both complexity and in number,—and hence become unfeasible beyond the first two well-known
stages of Reidemeister moves and Carter–Saito movie moves.

To be able to address these problems, we find it essential to work within the homotopy-theoretic
context of (∞, 2)-categories, as explained further in the following.

The modern formalism of higher algebra, as in [Lur17], offers a robust answer to the problem of
modelling braided monoidal structures in such a homotopical context: Namely in terms of the notion
of an E2-algebra [BV73]. This notion applies in any symmetric monoidal ∞-category V, and in the
(2, 1)-category of ordinary categories recovers the notion of a braided monoidal category by a folklore
result that we recover in Remark 7.7.7. Namely, an E2-algebra structure on an object V ∈ V consists
of a suitably compatible system of maps Confn(R2) → HomV(V

⊗n, V ) from configuration spaces of

points in R2. For example, a chosen basepoint of Conf2(R2) selects a multiplication map V ⊗ V µ−→ V ,

and the generator of π1(Conf2(R2)) ≃ Z selects a braiding isomorphism µ
∼−→ µ ◦ τ (where τ denotes

the symmetry isomorphism in V). More generally, the requisite compatibilites as n varies collectively
encode the homotopy coherent associativity of µ as well as its compatibility with the braiding.

To apply this formalism of E2-algebras to describe a braiding on Kb
loc(Sbim), we use V = Cat[stBZ

k ].
Spelled out, Cat[stBZ

k ] is the ∞-category of stBZ
k -enriched ∞-categories, i.e. (∞, 2)-categories whose

hom-(∞, 1)-categories are stable, idempotent complete, and equipped with a k-linear structure and an
action by Z, all appropriately compatible with the composition operations. Indeed, a stBZ

k -enriched
∞-category C ∈ Cat[stBZ

k ] has composition morphisms HomC(c0, c1)⊗HomC(c1, c2)→ HomC(c0, c2) in
stBZ

k , where ⊗ denotes the Day convolution symmetric monoidal structure on stBZ
k , rather than merely

functors HomC(c0, c1)× HomC(c1, c2) → HomC(c0, c2): The tensor product in stBZ
k implicitly enforces

our desired compatibility.
Theorem A and Theorem B construct Kb

loc(Sbim) as an E2-algebra
6 object in Cat[stBZ

k ]. In partic-
ular, its monoidal structure and braiding are automatically homotopy-coherently compatible with the
k-linearity and Z-actions on its hom-(∞, 1)-categories.

To construct this E2-algebra structure, we take inspiration from the homotopy-theoretic machinery
of obstruction theory , in which context one often finds it (somewhat paradoxically) easier to prove a
stronger theorem. Specifically, we prove Theorem B by establishing not just the existence of an E2-
algebra structure on the (∞, 2)-category Kb

loc(Sbim), but also its homotopy-theoretic uniqueness along
with its compatibility with k-linearity, Z-action, and with the fiber functor Hloc : K

b
loc(Sbim)→ stBZ

k .

6Although Cat[stBZ
k ] can be seen as an (∞, 3)-category (in fact it is self-enriched), the notion of an E2-algebra therein

only makes references to its underlying (∞, 1)-category.
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1.4.2. Higher-categorical notions of faithfulness and homotopy categories. To prove our main theorems,
we develop machinery to reduce the construction of algebraic structures on (∞, 2)-categories to corre-
sponding structures on their underlying ordinary homotopy categories, as well as higher-dimensional
variants. We outline some of these results, which might be of independent interest.

As a toy case, observe that given an∞-category C, a full subcategory C′ is determined entirely by the
subset h0C′ of the set h0C of equivalences classes of objects in C that are contained in C′. Furthermore,
if C is endowed with some multiplicative structure (e.g. monoidal, braided monoidal, or symmetric
monoidal), then C′ inherits such a structure if and only if h0C′ inherits the resulting structure from
h0C.

Given an (∞, 2)-category C, we write h1C for the ordinary category obtained by first discarding its
noninvertible 2-morphisms and then passing to the homotopy category, i.e. taking π0 of its hom-spaces.
Moreover, we say that a functor between (∞, 2)-categories is faithful if it is fully faithful on hom-
(∞, 1)-categories.7 Then, analogously to the above situation, we show that a faithful functor C′ → C
is determined entirely by their corresponding faithful functor h1C′ → h1C. Moreover, we show that if
C is braided monoidal equipped with the faithful functor C′ → C, then endowing C′ together with a
(compatible) braided monoidal structure is equivalent to endowing h1C′ and h1C′ → h1C with such a
structure, see Corollary 5.5.5. The task of defining an E2-algebra structure on C′ therefore reduces in
such a situation to the task of defining a braiding (in the classical sense!) on its homotopy 1-category
h1C′.

In fact, we prove the above results in much broader generality: In Section 5, we study the notion
of n-faithfulness for functors between (∞, k)-categories, and show in Section 5.3 that they define the
right classes in factorization systems on Cat(∞,k), whose corresponding left classes are given by the
n-surjective functors, which are surjective on objects, and on parallel morphisms up to level (n + 1),
see Definition 5.3.1. Using the iterative definition of higher categories, Cat(∞,k) := Cat[Cat(∞,k−1)],
we deduce this from general results that we prove regarding factorization systems on enriched ∞-
categories in Appendix B.4, also see [Hau23] for related recent result. Generalizing the above, we
establish in Corollary 5.5.3 that for any n and any k, (n− 1)-faithful functors to an (∞, k)-category C
are equivalently determined by (n− 1)-faithful functors to its homotopy n-category.

1.4.3. The fiber functor. The fiber functor Hloc : K
b
loc(Sbim)→ stBZ

k on which Theorem B is built, can
be viewed as a categorified and graded analog of the forgetful functor from a category of quantum
group representations to Vec. Since its target stBZ

k is braided monoidal (in fact symmetric monoidal),
it is tempting to apply the machinery of Section 1.4.2 to obtain a braiding on Kb

loc(Sbim).
However, this does not work because the analogy with the classical situation breaks down in an

important way. In the classical setting, the fiber functor is faithful and monoidal, but in general not
braided. By contrast, our categorified fiber functor will be braided monoidal but not faithful (in the
sense of Section 1.4.2). This lack of faithfulness prevents us from directly using the reduction results
from Section 1.4.2. In Section 1.4.4, we will discuss a restricted version of the fiber functor that is
faithful, which allows us to leverage the results indicated in Section 1.4.2.

In the end, the non-faithfulness turns out to be an essential feature of our fiber functor. This feature
is what allows Hloc and its source category Kb

loc(Sbim) to be equipped with a non-symmetrically
braided monoidal structure, even though the target category stBZ

k is symmetric monoidal. A faithful
braided fiber functor would force the source category to be symmetric!

In the classical situation, the existence of a fiber functor arises from the fact that quantum group
representations are ultimately categories of modules for a quasitriangular Hopf algebra, which can be
recovered from the fiber functor via Tannakian reconstruction. We would be very interested to see an
application of Tannakian reconstruction to our categorified fiber functor.

7Beware that these are not generally inclusions of subobjects, i.e. monomorphisms, in Cat(∞,2), see Warning 5.3.9.
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We expect our fiber functor to be important for future applications and computations. For instance,
the fact that it is braided may give a means of recursively computing all the algebraic data implicit in
the braided monoidal structure on Kb

loc(Sbim) on a cell-by-cell basis.

1.4.4. The prebraiding. Another key ingredient of our proof of Theorem B is the following: Kb
loc(Sbim)

is generated, in an appropriate sense, by a monoidal sub-2-category, restricted to which the fiber functor
to stBZ

k is faithful.
We begin by considering the sub-2-category8 Sbim ⊂ Kb

loc(Sbim) described as follows: it contains
all the same objects, but on hom-objects we pass to the subcategories Sbimn ⊆ Kb(Sbimn) of Soergel
bimodules (seen as complexes concentrated in degree 0). This is a monoidal sub-2-category: Soergel
bimodules are closed under parabolic induction.

Consider now the restricted fiber functor, i.e. the composite Sbim ↪→ Kb
loc(Sbim) → stBZ

k of the
inclusion followed by the fiber functor. Here, we arrive at an interesting tension. While the fiber
functor Kb

loc(Sbim) → stBZ
k is not faithful but (will be) braided, this composite is faihtful but not

braided: The braiding of Kb
loc(Sbim) does not restrict to one on Sbim. Indeed, Rouquier complexes

are typically genuine complexes, not concentrated in degree 0.
However, we now make a key observation: the (∞, 2)-category Kb

loc(Sbim) is obtained by applying
the left adjoint Kb to the hom-objects of the (2, 2)-category Sbim. In this sense, Sbim generates
Kb

loc(Sbim), which suggests that the braiding of Kb
loc(Sbim) might be uniquely determined by its

values on Sbim. In fact, for each m, there is a full additive monoidal subcategory BSbimm ⊆ Sbimm

of Bott–Samelson bimodules (2.3) which generates Sbimm under sums, retracts, and grading shifts.
These Bott–Samelson bimodules assemble into a sub-2-category BSbim ⊂ Sbim, which suggests that
the braiding of Kb

loc(Sbim) might even be uniquely determined by its values on BSbim.
In order to explore this idea further, let us imagine constructing the braiding on the monoidal

(∞, 2)-category Kb
loc(Sbim) of Theorem B by hand. This certainly requires, for every pair of objects

m,n ∈ N0, a braiding isomorphism m ⊗ n ∼−→ n ⊗m. Up to equivalence, this 1-morphism is already
determined by condition (2) of Theorem B: it must be given by the Rouquier complex for the positive
(m,n)-shuffle braid in Brm+n (see also Fig. 1). Of course, the braiding has to be natural : any complex
C ∈ Kb(Sbimm), seen as an endomorphism of m ∈ Kb

loc(Sbim), should “slide” along the m parallel
strands through the braiding by means of a specified homotopy equivalence (see Fig. 2), and likewise
for any C ′ ∈ Kb(Sbimn). In fact, the discussion in the previous paragraph suggests that it suffices to
specify these “slide” homotopy equivalences merely for objects C ∈ BSbimm ⊆ Kb(Sbimm).

We formalize such a specification through the key notion of a prebraiding on the monoidal functor
BSbim ↪→ Kb

loc(Sbim). We first describe such data in the simple setting of ordinary categories, i.e. in
the (2, 1)-category Cat: a prebraiding on a monoidal functor F : A → B between ordinary categories

consists of equivalences F (x)⊗ F (y) ∼−→ F (y)⊗ F (x) that are natural in x, y ∈ A and satisfy two ap-
propriate analogs of the hexagon axioms for braidings; see Definition 2.4.1. In particular, a prebraiding
on the identity functor idA is equivalent to a braiding on A. On the other hand, as we will see in Sec-
tion 1.4.5, in the ∞-categorical context, a prebraiding is a much sparser structure. Still, a prebraiding
on a monoidal functor between (∞, 2)-categories involves a substantial amount of coherence data.

Inspired by the results of Section 1.4.2, as a core input to our proof of Theorem B we construct
a prebraiding on the ordinary monoidal functor h1BSbim ↪→ h1K

b
loc(Sbim) in Section 2.5 whose pre-

braiding equivalence is given by the homotopy equivalence classes of the Rouquier complexes of positive
(m,n)-shuffle braids. This is based on explicit computations using the diagrammatic formulation of
Soergel bimodules, [EW16; EK10a]. Furthermore, this prebraiding is compatible with the fiber functor
h1Hloc : h1K

b
loc(Sbim)→ stBZ

k .

8The reader should be warned that the inclusion Sbim→ Kb
loc(Sbim) is merely a faithful functor but not a monomor-

phism in Cat(∞,2), see Warning 5.3.9.
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Finally, having constructed such a prebraiding at the level of homotopy categories, it remains to
show that it lifts uniquely to a fully homotopy coherent braiding on Kb

loc(Sbim) and on its fiber functor
Hloc : K

b
loc(Sbim)→ stBZ

k .

1.4.5. Prebraidings via∞-operads. To lift our 1-categorical prebraiding to braided monoidal structures
on (∞, 2)-categories, we first generalize prebraidings themselves to this (∞, 2)-categorical setting.

We implement the notion of a prebraiding in the context of ∞-operads as indicated in the diagram

T2 ⊗ E1 −→ A2 ⊗ E1 −→ E1 ⊗ E1
∼−→ E2

thereof, as we now explain. For more details see Appendix A.8 and Section 7.

• As indicated in Section 1.4.1, we formalize the notion of a braided monoidal structure via the
notion of an E2-algebra (with k-ary operations parametrized by Confk(R2)).

• Much simpler is the notion of an E1-algebra, which has k-ary operations parametrized by
Confk(R1). These spaces are discrete, and this ∞-operad is equivalent to the ordinary asso-
ciative operad.

• The equivalence E1⊗E1
∼−→ E2 is an instance of Dunn additivity. Hence, an E2-algebra structure

is equivalent to two compatible E1-algebra structures: AlgE2
(V) ≃ AlgE1

(AlgE1
(V)).

• Whereas E1 parametrizes (homotopy-coherently) associative and unital binary operations, by
forgetting associativity one arrives at the operad A2, which parametrizes binary operations
that are merely unital.

• The ∞-operad T2 is a two-colored ordinary operad, and parametrizes pairs of pointed objects

A,B ∈ AlgE0
(V)9 together with pointed morphisms A F−→ B, and A ⊗ A µ−→ B, along with

pointed homotopies µ(ηA ⊗ (−)) ≃ F ≃ µ((−) ⊗ ηA) in HomAlgE0 (V)(A,B). In particular, we

view a T2-algebra as having not an underlying object but having an underlying morphism,
namely the morphism F . The map of∞-operads T2 → A2 corepresents the operation carrying
an A2-algebra to the evident T2-algebra with A = B and F = idA.

We define a prebraiding on an E1-algebra morphism F in a symmetric monoidal ∞-category V to
be a T2-algebra structure on the correponding morphisms in AlgE1

(V), or equivalently a lift of the
corresponding [1] ⊗ E1-algebra in V to a T2 ⊗ E1-algebra, see Section 8.1. In the context of ordinary
categories, we show in Example 8.1.2 that this notion coincides with the one described in Section 1.4.4.

1.4.6. From prebraidings to braidings. In Section 1.4.4 we outlined the construction of a prebraiding
on the monoidal functor h1BSbim ↪→ h1K

b
loc(Sbim) between ordinary monoidal 1-categories, which

is compatible with the fiber functor h1Hloc : h1K
b
loc(Sbim) → h1st

BZ
k . To complete the proof of

Theorem B, it remains to show that this admits a unique lift to a braiding on Kb
loc(Sbim) such that

the fiber functor is braided.
We prove this in steps, combining the machinery described above, as follows, see Section 8.
Applying a version of the techniques described in Section 1.4.2, it follows that our prebraiding on

h1BSbim→ h1K
b
loc(Sbim) over h1st

BZ
k lifts uniquely to a prebraiding on the (∞, 2)-functor BSbim→

Kb
loc(Sbim) over stBZ

k .
In order to proceed, we note a crucial property of prebraidings, see Corollary 8.3.7: given an ad-

junction F : C ⇄ D : G in which the left adjoint is symmetric monoidal, the data of a prebraiding
on an E1-algebra morphism c → G(d) is equivalent to the data of a prebraiding on its adjunct
F (c) → d. We use this to extend our prebraiding over stBZ

k from one on BSbim ↪→ Kb
loc(Sbim) to

one on Sbim ↪→ Kb
loc(Sbim), and then we use it again to extend the latter to one on the defining

equivalence Kb
loc(Sbim)

∼−→ Kb
loc(Sbim).

9A pointed object A is an object together with a morphism ηA : 1V → A, equivalently, an E0-algebra. A pointed
morphism is a morphism that respect that pointing, equivalently, an E0-algebra map.



10 YU LEON LIU, AARON MAZEL-GEE, DAVID REUTTER, CATHARINA STROPPEL, AND PAUL WEDRICH

So, we have obtained a prebraiding, i.e. a T2-structure on the identity morphism of Kb
loc(Sbim) ∈

AlgE1
(Cat[stBZ

k ]/stBZ
k
). Because the identity morphism is invertible, this is equivalent to an A2 ⊗ E1-

structure on Kb
loc(Sbim) ∈ Cat[stBZ

k ]/stBZ
k
.

A final task is to lift this A2⊗E1-structure to an E2 ≃ E1⊗E1 structure. Recall that prebraidings on
identity functors between ordinary monoidal 1-categories, i.e. A2⊗E1-structures in Cat1, are precisely
the same as braidings, i.e. E2-structures. More generally, we show in Section 7.7 that A2 ⊗ E1- and
E2-algebras agree in general (2, 1)-operads.

This observation applies to our situation due to a crucial truncatedness result regarding the endo-
morphism∞-operad of the object Kb

loc(Sbim) ∈ Cat[stBZ
k ]/stBZ

k
. Namely, while we expect it to be quite

complicated in general, we prove in Corollary 8.4.4 that the maximal sub-∞-operad in the image of its
E1-structure is in fact just a (2, 1)-operad. This suffices for our purposes since the map of ∞-operads
E1 → E2 is surjective on path components of mapping spaces.

Thus, our prebraiding on Kb
loc(Sbim) over stBZ

k extends uniquely to an E2-algebra structure estab-
lishing our main goal.

After now having introduced the key ideas and concepts, we finish this introduction by giving an
outline of the organization of the paper.

1.5. Organization of the paper. In Section 2 we start by reviewing the basics of Soergel bimodules,
Bott–Samelson bimodules, and their diagrammatics. Next we proceed to the bounded homotopy
category of Soergel bimodules and discuss Rouquier complexes for braids. The homotopy equivalence
classes of bounded chain complexes of Soergel bimodules can then be organized into a monoidal 1-
category h1K

b
loc(Sbim). In Section 2.5, we define the notion of a prebraiding and construct such

a prebraiding on the functor h1BSbim → h1K
b
loc(Sbim) that includes isomorphism classes of Bott–

Samelson bimodules into h1K
b
loc(Sbim). This requires explicit diagrammatic computations. Finally,

we relate the notion of prebraiding to centers and centralizers in Theorem 2.6.4, which will be important
for ∞-categorical aspects later on.

From Section 3 we move into the world of ∞-categories. Section Section 3 mostly recalls and col-
lects results from [Lur17]. We begin in Section 3.1 by reviewing various colimit completion procedures,
such as the Ind-completion under filtered and the PΣ-completion under sifted colimits, and symmetric
monoidal structures on ∞-categories with certain colimits (and functors preserving those colimits).
Next, we recall the notion of compactly/projectively generated ∞-categories in Section 3.2. Further-
more, in Proposition 3.2.8, we show that Ind gives an equivalence between small idempotent-complete
∞-categories with finite colimits, and presentable compactly generated ∞-categories. Similarly, PΣ

gives an equivalence between small idempotent-complete∞-categories with coproducts, and presentable
projectively generated ∞-categories. We review the theory of additive and stable ∞-categories in Sec-
tion 3.3 and give an ∞-categorical interpretation of a process that is ubiquitous in the categorification
literature: passing from an additive category to its bounded chain homotopy category, in Section 3.4.
In particular we show as Corollary 3.4.10 that for a small idempotent-complete additive 1-category A,
the stable∞-category Kb(A) of chain complexes in A is the free stable∞-category on A. We introduce
the ∞-category of graded k-modules and review their Day convolution symmetric monoidal structures
in Section 3.5. Lastly, in Section 3.6 we review the theory of derived∞-categories developed in [Lur17,
§ 1.3] and prove as Proposition 3.6.9 that the module ∞-category of a discrete graded algebra is the
derived ∞-category of graded modules.

In Section 4, we define the∞-categories addBZ
k and stBZ

k of additive and stable k-linear∞-categories
with a Z-action, as well as their self-enrichment. Furthermore, we construct full symmetric monoidal
enriched subcategories Morflat,gr−proj(modZk ) and DMorflat,gr−perf(modZk ) of addBZ

k and stBZ
k respec-

tively, whose objects are labelled by flat discrete graded k-algebras, and whose enriched homs are given
by (chain complexes) of discrete graded bimodules satisfying suitable finiteness condition. These Morita
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categories facilitate our homotopy coherent construction of the Soergel (2, 2)-category in Section 6. We
begin in Section 4.1 with a review of morphism objects in various module categories as well as the
self-enrichment of presentably symmetric monoidal ∞-categories. In Section 4.2, we define addBZ

k and
stBZ

k as well as the symmetric monoidal left adjoint Kb in the graded-linear context. Concerning grad-
ings, we prove in Section 4.3 an ∞-categorical version of the familiar equivalence between categories
enriched in graded modules and categories with an action of a monoid.10 To finish the section, we
construct the desired enriched Morita categories Morflat,gr−proj(modZk ) and DMorflat,gr−perf(modZk ) in
Section 4.5.

In Section 5, we enter the world of (∞, k)-categories. The purpose of this section is to introduce and
study various factorization systems on the∞-category of (∞, k)-categories. We prove as Theorem 5.3.7
the existence of the (n-surjective, n-faithful) factorization system on Cat(∞,k), generalizing the familiar
(surjective-on-objects, fully-faithful) factorization system on 1-categories. Furthermore, we define the
homotopy n-category functor and prove as Theorem 5.5.2 that (n− 1)-faithful functors into a (∞, k)-
category C are controlled by its homotopy n-category hnC. This is crucial in both the construction of
the Soergel (2, 2)-category in Section 6 as well as reducing braidings to prebraidings in Section 8. We
begin in Section 5.1 with a quick recollection on the basics of (∞, k) category theory. In Section 5.2, we
recall the familiar (n-connected, n-truncated) factorization system on the ∞-category of spaces. We
then proceed in Section 5.3 to inductively define the classes of (n-surjective, n-faithful)-morphism and
prove as Theorem 5.3.7 that they form factorization system. Lastly, we define the n-homotopy category
functor in Section 5.4, state Theorem 5.5.2 (regarding faithful functors and homotopy categories) and
its consequences in Section 5.5, and prove Theorem 5.5.2 in Section 5.6.

In Section 6, we define the relevant higher categories of Bott–Samelson bimodules and (chain com-
plexes of) Soergel bimodules. We construct the monoidal (2, 2)-categories BSbim in Section 6.1 and
Sbim in Section 6.2, whose hom categories are the categories of type A Bott–Samelson and Soergel
bimodules, respectively. By construction, Sbim carries all the desired extra structure such as local
k-linearity and Z-action. In Section 6.3, we verify that the hom-categories of Sbim indeed agree with
the categories Sbimn. To finish the section, and to prove Theorem A, we construct in Section 6.4
the monoidal (∞, 2)-category Kb

loc(Sbim) whose hom categories are stable ∞-categories of chain com-
plexes of type A Soergel bimodules, together with all its structure, and define the fiber functor Hloc

from Kb
loc(Sbim) to stBZ

k in Section 6.5.
In Section 7, we introduce the operadic machinery necessary for constructing the braiding on the

monoidal (∞, 2)-category Kb
loc(Sbim). In particular, we formulate prebraidings using the language of

∞-operads and prove as Corollary 7.7.8 that braidings and prebraidings coincide when the ambient
symmetric monoidal∞-category (and more generally∞-operad) is suitably truncated, generalizing the
well-known statement that an E2-algebra structure on a 1-category is the same as a braided monoidal
structure. We extensively use Lurie’s theory of ∞-operads [Lur17, § 2] and refer the reader to Appen-
dix A.8 for an overview.

After a quick recollection on unital ∞-operads in Section 7.1, we construct the T2 and A2 operads,
which are the main players of this section, in Section 7.2. After defining a relative version of T2

structure in Section 7.3, we review the ∞-categorical versions of centralizers and center [Lur17, § 5.2]
in Section 7.4. Using the theory of centralizers, we prove as Corollary 7.4.15 that T2-structures are the
∞-categorical generalization of the notion of prebraiding. We construct the (n-surjective, n-faithful)
factorization system on ∞-operads in Section 7.5 and prove a surjectivity result in Section 7.6. In
Section 7.7 we prove Corollary 7.7.8 (concerning prebraidings and braidings), which is the main result

10On the level of ordinary 1-categories, this statement is usually implicitly assumed in the literature on Bott-Samelson
and Soergel bimodules and crucial when passing between algebraic or Lie theoretic definitions and diagrammatical versions

of these important categories.
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of this section. Finally, in Section 7.8 we end with an easy but useful result regarding lifting maps of
algebras.

In Section 8, we finally prove Theorem B. After defining the spaces of braidings and prebraidings
in Section 8.1, in Section 8.2 we state our main Theorem 8.2.1, an abstract theorem about lifting
prebraidings on homotopy 1-categories to braidings, assuming the existence of a fiber functor. We
expect this theorem can be used to build braidings on other interesting (∞, 2)-categories. Applying
Theorem 8.2.1 to the prebraiding on h1BSbim → h1K

b
loc(Sbim) constructed in Section 2, we prove a

precise version of Theorem B as Corollary 8.2.2. The remainder of the section is concerned with the
proof of Theorem 8.2.1. The space of braidings is shown to be equivalent, through a series of reduction
steps, to spaces of prebraidings in progressively less-structured situations, terminating in a set (rather
than a space) of prebraidings between the homotopy 1-categories. Assuming various truncatedness
conditions, we prove those reduction steps are equivalences in Section 8.3. Finally, in Section 8.4 we
prove those truncatedness hypothesis and complete the proof of Theorem 8.2.1.

In Appendix A, we provide a leasurely introduction to various aspects of ∞-categories and higher
algebra.

In Appendix B, we review the theory of factorization systems on ∞-categories and prove a num-
ber of ways of obtaining new factorization systems from existing ones, with a focus on presentable
∞-categories. In particular, we prove two important results for constructing factorization systems,
Theorem B.3.1 (concerning algebras over∞-operads) in Appendix B.3 and Theorem B.4.1 (concerning
enriched ∞-categories) in Appendix B.4.
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2. A prebraiding on the homotopy category of Soergel bimodules

2.1. Review of Soergel bimodules and diagrammatics. We let k denote the rationals Q or, more
generally, a commutative Q-algebra. We consider the k-linear monoidal categories Sbimn of Soergel
bimodules for the symmetric group Sn acting on its natural representation. In this section, if not
specified otherwise, categories mean ordinary categories (in contrast to ∞-categories used later) and
functors mean ordinary functors. For a fixed nonnegative integer n, let Rn = k[x1, x2, . . . , xn] denote
the polynomial ring over k in n variables viewed as polynomial functions on h∗ = (kn)∗ in the standard
way. Permuting the basis vectors of kn induces a left action of the symmetric group W = Sn on
Rn such that the simple transposition si = (i, i + 1) acts by swapping the variables xi and xi+1.
Denote α̌i = xi − xi+1 for 1 ≤ i ≤ n − 1. Then restriction to the span of the α̌i’s gives the usual
geometric representation of W viewed as the Coxeter group generated by the simple transpositions.
For any subgroup G of W let RG

n be the subalgebra of G-invariants in Rn. In case G = ⟨si⟩ for some
1 ≤ i ≤ n − 1 we abbreviate RG

n = Ri
n. We will view Rn as a graded (by which we mean Z-graded)

algebra by putting the generators xi in degree 2. Note that Ri
n is a graded subalgebra and we have a

canonical, grading-preserving decomposition

(2.1) Rn = Ri
n ⊕ α̌iR

i
n ≃ Ri

n ⊕Ri
n⟨2⟩

as graded Ri
n-bimodules. Here and in the following we denote for j ∈ Z and a graded (bi)module

M = ⊕i∈ZMi by M⟨j⟩ the graded (bi)module which equals M as (bi)module but with the grading
shifted up by j, i.e. M⟨j⟩i = Mi−j . The grading shifting functors ⟨j⟩, j ∈ Z equip the category of
graded (Rn, Rm)-bimodules for fixed n,m with an action of the group Z.

By a graded k-linear category11 we mean a category enriched in Z-graded k-modules. As an example
we can take as objects graded Rn-bimodules with all Rn-bimodule maps, denoted Homgr. In this case,
the grading shift functors are compatible with the grading on morphisms as follows:

(2.2) Homgr(M⟨k⟩, N⟨l⟩) = Homgr(M,N)⟨l − k⟩
Definition 2.1.1. The graded k-linear category of Bott–Samelson bimodules for Rn is the graded
k-linear full subcategory BSbimgr

n of Rn-bimodules given by all graded Rn-bimodules of the form:

(2.3) Bi⟨j⟩ := R⊗R
sik R⊗R

sik−1 · · · ⊗R
si1 R⟨j − k⟩

for R = Rn, j ∈ Z and some i = (ik, ik−1, . . . , i1) ∈ {1, 2, . . . n − 1}k with k ∈ N0, including the
bimodules R⟨j⟩ in case k = 0. In the case k = 1 we also abbreviate:

Bi := R⊗Rsi R⟨−1⟩
Using this shorthand, (2.3) may also be expressed as:

(2.4) Bi⟨j⟩ ≃ Bik ⊗R Bik−1
⊗R · · · ⊗R Bi1⟨j⟩

Definition 2.1.2. There are two common variations of Definition 2.1.1:

BSbimn ⇝BSbimgr
n ⇝ BSbim

gr

n(2.5)

• Namely, BSbimn is the k-linear (but no longer graded k-linear) category obtained by restricting
to the degree zero part of the morphism spaces. We call this the degree zero subcategory .
(In the language of enriched category theory, this is the underlying category of the category
enriched in graded vector spaces; it inherits the linear structure.) By remembering the Z-action
by grading shift functors, all other homogeneous components of morphism spaces in BSbimgr

n

can be recovered from (2.2).

11Note that this is not the same concept as a k-linear category that is also graded by a group.
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• Alternatively, one can consider the graded k-linear full subcategory BSbim
gr

n on unshifted Bott–
Samelson bimodules Bi, i.e. where j = 0 in (2.3). From this category one can reconstruct the
morphism spaces between shifted Bott–Samelsons, that is all objects in BSbimgr

n , again via
(2.2).

We refer to [MOS09, (2.1)] for a discussion of these essentially equivalent ways of handling graded
k-linear categories.

The version BSbimgr
n in Definition 2.1 is the most flexible one, but with one caveat: when making

statements about isomorphism, idempotents, and categorical constructions such as (co)products, we
tacitly require that the structure morphisms are of degree zero, see e.g. (2.1), i.e. we work in the
underlying category. For this reason, we will henceforth almost exclusively work with BSbimn. The
only exception is Section 2.5, where we use the version BSbim

gr

n to connect to the diagrammatic Hecke
category.

Remark 2.1.3. As defined, BSbimn is a monoidal full subcategory of the k-linear category of graded
Rn-bimodules and grading-preserving bimodule maps, with tensor product − ⊗Rn

−. More precisely,
since each Bi is free of rank 2 as a graded Rn-module from the left and from the right, all objects of
BSbimn are finitely generated graded-projective12 Rn-modules from both sides and the tensor product
coincides with the derived tensor product.

Definition 2.1.4. The monoidal k-linear category Sbimn of Soergel bimodules for Rn is the Karoubian
closure, that is the smallest additive idempotent-complete full subcategory of graded Rn-bimodules
containing BSbimn.

For later use, we also record how Bott–Samelson and Soergel bimodules for various n can be related.

Definition 2.1.5. Given a, b, c ∈ N0 let ja|c = jba|c : Rb ↪→ Ra+b+c be the algebra homomorphism given

by xi 7→ xi+a. Given an Rm-bimodule M and an Rn-bimodule N , the tensor product M ⊗k N is an
Rm ⊗Rn-bimodule, hence an Rm+n-bimodule via the isomorphism j0|n ⊗ jm|0. We call this functorial
operation parabolic induction.

It is straightforward to see directly from Definition 2.1.1 that Bott–Samelson bimodules are sent
to (bimodules isomorphic to) Bott–Samelson bimodules under parabolic induction. To distinguish the
two kinds of tensor product, we will use the convention:

◦1 := ⊗Rn
: BSbimn × BSbimn → BSbimn

⊠ := ⊗k : BSbimm × BSbimn → BSbimm+n

and write f ◦2 g : M → P for the composition of morphisms f : M → N , g : N → P in BSbimn. We
use the same notation for Sbimn.

The symbols ◦2, ◦1 and ⊠ are meant to foreshadow that these operations should form the 2- and
1-morphism composition and the tensor product in a monoidal bicategory, see Remark 2.3.3.

2.2. Review of Rouquier complexes.

Notation 2.2.1. For any k-linear category C with zero object, we write Chb(C) for the k-linear category
of bounded (on both sides) chain complexes in C, with chain maps as morphisms. If C is additive (and

thus has a zero object) or equipped with a Z-action, then so is Chb(C). If C is additive and equipped

with a monoidal structure compatible with ⊕, then this is inherited by Chb(C). There is a natural
notion of homotopy between chain maps and the nullhomotopic chain maps form a k-linear (monoidal)
ideal.

12By a finitely generated graded-projective A-module for a graded algebra A we mean an A-module that is a retract
of a finite direct sum of grading shifts of the rank 1 free A-module along grading preserving maps.
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Definition 2.2.2. The quotient of Chb(C) by the nullhomotopic chain maps is the chain homotopy
category Kb(C). An isomorphism between objects of Kb(C) is called a chain homotopy equivalence. 13

Definition 2.2.3. For n ≥ 2 we denote by Brn the braid group with (Artin) generators σi, 1 ≤ i ≤ n−1.
Given a generator or its inverse, we will consider the following complexes in Chb(Sbimn):

(2.6) F (σi) :=

(
0 −→ Bi

::

m−→ R⟨−1⟩ −→ 0

)
, F (σ−1

i ) :=

(
0 −→ R⟨1⟩ ∆−→ Bi

::
−→ 0

)

Here the underlined
:::::::::

part is in homological degree zero, m is induced by the multiplication map Bi =

R⊗RsiR⟨−1⟩ → R⟨−1⟩, and ∆ is the bimodule map determined by 1 7→ xi⊗1−1⊗xi+1. An expression
β = σϵ1

i1
· · ·σϵr

ir
with ϵj ∈ {±} is called a braid word with corresponding braid element β ∈ Brn. The

word is positive if ϵj = 1 for 1 ≤ j ≤ r. Given β define

F (β) := F (σϵ1
i1
) ◦1 · · · ◦1 F (σϵr

ir
)

where we make use of the horizontal composition Chb(Sbimn) (given by the obvious extension of
◦1 = ⊗R). By convention, the empty braid word gives F (∅) = R.

The complexes F (β) are called Rouquier complexes. They were first thoroughly studied by Rouquier
who proved in [Rou06] that, up to canonical homotopy equivalence, these complexes are independent
of the chosen braid word representing β. More precisely the following holds:

Theorem 2.2.4 (Rouquier canonicity). Let β
1
and β

2
be braid words representing the same braid β,

then there exist homotopy equivalences

ψβ
1
, β

2
: F (β

1
)→ F (β

2
)

which form a transitive system, i.e. if β
3
is a third braid word representing the same braid, then

ψβ
2
, β

3
◦2 ψβ

1
, β

2
∼ ψβ

1
, β

3
.

If moreover β′
1
, β′

2
are braid words representing another braid β′ then we have

(2.7) ψβ
1
β′
1
,β

2
β′
2
∼ ψβ

1
,β

2
◦1 ψβ′

1
,β′

2
.

This rephrasing of Rouquier’s results from [Rou06] is a slight strengthening of [EH17, Prop. 2.19].
As a consequence we may abuse notation and write F (β) instead of F (β).

Corollary 2.2.5. The Rouquier complexes F (β) are invertible objects in the monoidal category Kb(Sbimn).

Remark 2.2.6. For n ≥ 2 and R = Rn as above and w ∈ Sn we let R⟲w denote the graded R-bimodule
which is isomorphic to R as left R-module and with right-action twisted by w: i.e. r ∈ R acts on Rw

from the right as multiplication by w(r). We emphasize that for non-trivial w, this Rn-bimodule R⟲w

is not an object of Sbimn.
However, for 1 ≤ i ≤ n−1, the bimodule morphism R⟲si⟨1⟩ → Bi determined by 1 7→ xi⊗1−1⊗xi

induces a quasi-isomorphism R⟲si⟨1⟩ → F (σi). Likewise, the multiplication map Bi → R⟲si⟨−1⟩
determined by 1⊗ 1 7→ 1 induces a quasi-isomorphism F (σ−1)→ R⟲si⟨−1⟩.

Up to a grading shift, the generating Rouquier complexes, and more generally, the Rouquier com-
plexes of positive resp. negative permutation braids, can hence be identified with permutation bimod-
ules upon proceeding to the derived category Db(RgrbmodR) of graded R-R-bimodules. To obtain an
interesting (non-symmetric) braiding, it is thus essential to work up-to-chain-homotopy, rather than
up-to-quasi-isomorphism. Nevertheless, the comparison with permutation bimodules is important in
this paper and the grading shifts in the following definition are motivated by it.

13The chain homotopy category Kb(C) is often just called ‘homotopy category’; we here reserve the latter term for
the more general construction of a 1-category from a higher category, see Definition 5.4.11.
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Definition 2.2.7. For m,n ≥ 0, we define the braiding complexes:

Xm,n := F ((σn · · ·σ1) · · · (σi+n−1 · · ·σi) · · · (σm+n−1 · · ·σm))⟨−mn⟩(2.8)

X ′
m,n := F ((σ−1

n · · ·σ−1
m+n−1) · · · (σ−1

i · · ·σ−1
i+m−1) · · · (σ−1

1 · · ·σ−1
m ))⟨mn⟩(2.9)

The braiding complexes Xm,n (resp. X ′
m,n) will be called positive (resp. negative) cabled crossings

complexes or just cabled crossings, since the underlying braids are cabled crossings.
The braids appearing in the special cabled crossings Xm,1, X

′
m,1, X1,n, and X ′

1,n will be called
Coxeter braids, since they are braid versions of Coxeter words, see the illustrations in Figure 1 (as for
functions, we compose functors and read diagrams from right to left. The Artin generator σi acts on
the i-th and (i+ 1)-th strand from the bottom.).

, , ,

Figure 1. Cabled crossings X2,3, X
′
3,2, and Coxeter braids X1,4, X

′
1,4.

Lemma 2.2.8. Cabled crossings are built from Coxeter braids. For m,n ≥ 0, we have

Xm,n ≃ (X1,n ⊠ 1m−1) ◦1 · · · ◦1 (1m−1−i ⊠X1,n ⊠ 1i) ◦1 · · · ◦1 (1m−1 ⊠X1,n)

h.e.≃ (1n−1 ⊠Xm,1) ◦1 · · · ◦1 (1i ⊠Xm,1 ⊠ 1n−1−i) ◦1 · · · ◦1 (Xm,1 ⊠ 1n−1)

X ′
m,n ≃ (1n−1 ⊠X

′
m,1) ◦1 · · · ◦1 (1i ⊠X

′
m,1 ⊠ 1n−1−i) ◦1 · · · ◦1 (X ′

m,1 ⊠ 1n−1)

h.e.≃ (X ′
1,n ⊠ 1m−1) ◦1 · · · ◦1 (1m−1−i ⊠X

′
1,n ⊠ 1i) ◦1 · · · ◦1 (1m−1 ⊠X

′
1,n)

Proof. The isomorphisms hold by associativity of ◦1. The homotopy equivalences come from applying
braid relations, see Theorem 2.2.4. □

2.3. Isomorphism classes of Soergel bimodules. We have already seen concrete hints that Soergel
bimodules for symmetric groups form a monoidal bicategory and in Section 2.5 we will see elements of
a braiding on the homotopy category. The rigorous construction of the braiding will be carried out in
an ∞-categorical setting later, but it requires a coupling to the classical setting here to enable a few
critically important computations. The optimal handover point between these two worlds turns out to
be one categorical dimension lower than we have been working in so far. In this section, we prepare
the descent to this common ground from the classical side.

Definition 2.3.1. We let h1BSbim denote the 1-category, whose set of object is N0 and whose mor-
phism sets between objects n,m are

(2.10) Homh1BSbim(n,m) =

{
h0BSbimn n = m
{0} n ̸= m

where h0BSbimn denotes the set of isomorphism classes of objects in BSbimn, and whose composition
of morphisms n → n is induced by the monoidal structure ⊗Rn

of BSbimn. The category h1BSbim
admits a monoidal structure with monoidal product ⊠ : h1BSbim × h1BSbim → h1BSbim defined on
objects by n⊠m = n+m and on morphisms using parabolic induction:

(2.11) h0⊠ : h0BSbimn × h0BSbimm → h0BSbimn+m.
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The currently ad-hoc notation h1 will be justified later in Corollary 6.1.3 when we pass to ∞-
categories.

Definition 2.3.2. Let h1K
b
loc(Sbim) be the monoidal 1-category whose objects are n ∈ N0 and the

morphisms between objects n,m are

(2.12) Homh1Kb
loc(Sbim)(n,m) =

{
h0K

b(Sbimn) n = m
{0} n ̸= m

The monoidal product is induced by parabolic induction on chain complexes of Soergel bimodules
and again we have Z-actions on the morphism sets, inherited from grading shifts of bimodules. Since
the inclusion BSbimn → Kb(Sbimn) of Bott–Samelson bimodules as chain complexes concentrated in
homological degree zero is compatible with parabolic induction, this defines a monoidal functor

(2.13) h1Kloc : h1BSbim→ h1K
b
loc(Sbim).

In fact, this intertwines the Z-actions on morphism sets.

In Corollary 6.4.3, we match (2.13) with its ∞-categorical version.

Remark 2.3.3. We leave it to the reader to check that the involved categories are monoidal as claimed.
The conceptual reason behind this is that these categories are the shadow of monoidal bicategories in the
sense of [Bén67] (the objects are the same, but morphism categories are given for instance by Kb(Sbimn)
instead of the sets h0K

b(Sbimn) in (2.12)). Although these monoidal bicategories play an important
conceptual role in represention theory and quantum topology, see e.g. [EW16; HRW21a; HRW21b],
the construction of the monoidal structure has not yet appeared in full detail in the literature. In the
world of ∞-categories we will obtain an analogous construction in Section 6.

Definition 2.3.4. Given a graded algebra A, we call an object of the derived category D(grmodA) of
graded A-modules graded-perfect if it is quasi-isomorphic to a finite chain complex of finitely generated
graded-projective A-modules (see Footnote 12).

Let h1DMorpoly,gr−perf(modZk) be the symmetric monoidal 1-category whose objects are the graded
algebras Rn = k[x1, . . . , xn] for n ∈ N0 and whose morphism sets between algebras Rn and Rm are
given by the set

h0D
(
Rn

grbmodRm

)gr−perf

of isomorphism classes of objects in the derived category of graded Rn–Rm bimodules which are graded-
perfect as right (i.e. Rm-)modules; composition is the derived graded tensor product over the respective
polynomial algebras. Similar to Definition 2.1.5, the monoidal structure is given by the derived graded
tensor product ⊗L

k over the ground ring k, under the identification Rn ⊗L
k Rm ≃ Rn ⊗k Rm ≃ Rn+m.

Definition 2.3.5. We define the monoidal functor

(2.14) h1Hloc : h1K
b
loc(Sbim)→ h1DMorpoly,gr−perf(modZk),

which takes an object n to the polynomial algebra Rn and a chain homotopy equivalence class of
a chain complex of Soergel bimodules to the corresponding quasi-isomorphism class of complexes of
graded bimodules.

The notation h1Hloc will be justified in Corollary 6.5.4, the notation Hloc indicates ‘taking homology
at 1-morphism level’.

Our first main result is the construction of a prebraiding structure on (2.13).

Remark 2.3.6. In the ∞-categorical setting, we will replace h1DMorpoly,gr−perf(modZk) with a more

natural target category with less restrictions on objects. Namely, the category h1DMorpoly,gr−perf(modZk)

is a full symmetric monoidal subcategory of the category h1DMorflat,gr−perf(modZk) whose objects are
arbitrary flat graded algebras, and morphims are isomorphism classes of right-graded-perfect derived
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bimodules between them. By passing to module categories over these algebras, this can in turn be
realized as a full subcategory of the category h1st

BZ
k of stable k-linear categories with a Z-action and

equivalence classes of k-linear exact Z-equivariant functors between them. In the next sections, we
will lift the composite functor h1K

b
loc(Sbim) → h1DMorpoly,gr−perf(modZk) → h1st

BZ
k to a functor of

(∞, 2)-categories.
2.4. Prebraidings. As we will see, the cabled crossing complexes from Definition 2.2.7 supply part of
the data of a braiding on (an ∞-categorical version of) chain complexes of Soergel bimodules. What
these complexes themselves do not yet encode is the naturality of the braiding—informally speaking,
how chain complexes of Soergel bimodules slide through cabled crossings up to coherent homotopy.
To capture the naturality of the braiding, we start with a threefold simplified situation: we only aim
to slide bimodules (instead of complexes thereof!) through cabled crossings and in fact only Bott–
Samelson bimodules, and even simpler, it will be enough to do this on the level of isomorphism classes.
To this end, we introduce the crucial notion of a prebraiding.

Definition 2.4.1. Let A and B be monoidal 1-categories, with monoidal product denoted by ⊠ in
both cases and with associators bx,y,z in B. A prebraiding β on a monoidal functor F : A → B consists
of the data of isomorphisms

F (x)⊠ F (y)
βx,y−−−→ F (y)⊠ F (x) ∀x, y ∈ A

that form a natural transformation ⊠◦ (F ×F )⇒ ⊠op ◦ (F ×F ) and satisfy the following two hexagon
axioms for all x, y, z ∈ A:

(2.15)

(F (x)⊠ F (y))⊠ F (z) (F (y)⊠ F (x))⊠ F (z) F (y)⊠ (F (x)⊠ F (z)) F (y)⊠ (F (z)⊠ F (x))

F (x)⊠ (F (y)⊠ F (z)) F (x)⊠ F (y ⊠ z) F (y ⊠ z)⊠ F (x) (F (y)⊠ F (z))⊠ F (x)

F (x)⊠ (F (y)⊠ F (z)) F (x)⊠ (F (z)⊠ F (y)) (F (x)⊠ F (z))⊠ F (y) (F (z)⊠ F (x))⊠ F (y)

(F (x)⊠ F (y))⊠ F (z) (F (x⊠ y))⊠ F (z) F (z)⊠ F (x⊠ y) F (z)⊠ (F (x)⊠ F (y))

b

βx,y⊠id b id⊠βx,z

b−1

≃ βx,y⊠z ≃

b−1

id⊠βy,z b−1 βx,z⊠id

b

≃ βx⊠y,z ≃

where the isomorphisms ≃ are part of the data of F . (Supressing them provides the hexagon shapes.)

We have the following trivial observation:

Corollary 2.4.2. Let A be a monoidal 1-category. A prebraiding β on the identity functor Id : A → A
is a braided monoidal structure on A in the sense of [Eti+15, Def. 8.1.1.].

Remark 2.4.3. Observe however that a prebraiding is not (!) required to satisfy an analog of the
braid relation (a.k.a. third Reidemeister move) of the form

(2.16)
bF (z),F (y),F (x) ◦ (βy,z ⊠ id) ◦ b−1

F (y),F (z),F (x) ◦ (id⊠ βx,z) ◦ bF (y),F (x),F (z) ◦ (βx,y ⊠ id)

= (id⊠ βx,y) ◦ bF (z),F (x),F (y) ◦ (βx,z ⊠ id) ◦ b−1
F (x),F (z),F (y) ◦ (id⊠ βy,z) ◦ bF (x),F (y),F (z)

Remark 2.4.4. In the situation of Corollary 2.4.2, the braid relation (2.16) holds, because it can be
proven using the naturality of β. There are in fact two distinct proofs, namely by sliding either of the
two highlighted crossings under the remaining strand:
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In a higher-categorical version of a prebraiding, these two witnesses for the braid relation need not be
realized by the same 2-morphism. However, in the axiomatics of braided monoidal 2-categories, the
cells witnessing these two proofs are equated by the so-called S+ = S− relation of [BN96] (which was
omitted in [KV94b]). For a monoidal higher category, a prebraiding on the identity functor therefore
does not imply the braid relations (2.16), see also Remark 2.5.7, and in particular does not encode a
braided monoidal (i.e. E2-)structure. In Section 7, we will revisit this point and show that a prebraiding
on the identity functor always encodes an A2⊗E1-structure, which differ in general from E2-structures.

We also want to introduce a relative notion of prebraiding, over a braided monoidal 1-category:

Definition 2.4.5. Let D be a braided monoidal 1-category. Assume C1 is a monoidal 1-category,
and C2 is a monoidal category over D, i.e. equipped with a monoidal functor g : C2 → D. Let now
F : C1 → C2 be a monoidal functor. Then we can consider C1 as a monoidal 1-category over D, namely
with respect to f := g ◦ F : C1 → D, and F becomes a monoidal functor over D.

A prebraiding over D on F : C1 → C2 is then defined to be a prebraiding on F as in Definition 2.4.1,
satisfying the additional condition that g maps the prebraiding isomorphisms in C2 to the given braiding
isomorphisms in D.
Remark 2.4.6. More explicitly, with D, C1, C2, F, g, f as in Definition 2.4.5, a prebraiding on F with
components βx,y is a prebraiding on F over D if the isomorphism

g ◦ βx,y : g(F (x))⊠ g(F (y)) ≃ g(F (x)⊠ F (y))→ g(F (y)⊠ F (x)) ≃ g(F (y))⊠ g(F (x))
coincides with the given braiding isomorphism on D, i.e. with f(x)⊠ f(y)→ f(y)⊠ f(x) for all pairs
of objects x, y ∈ C1.
Corollary 2.4.7. Let A with g : A → D be a monoidal 1-category over D. Then a prebraiding over
D on the identity functor Id : A → A is a braided monoidal structure on A with the property that g is
braided monoidal in the sense of [Eti+15, Def. 8.1.7.].

Definition 2.4.8. For a monoidal functor F : A → B, we denote by PreBraid(F ) the set of prebraidings
of F and for a monoidal category A, we denote by Braid(A) := PreBraid(Id: A → A) the set of
compatible braidings onA. The relative versions of Definition 2.4.5 are denoted by PreBraid/D(F : A →
B) and Braid/D(A) respectively.
2.5. Prebraiding for Soergel bimodules. We are now prepared to construct a prebraiding on the
functor h1Kloc : h1BSbim→ h1K

b
loc(Sbim) from (2.13).

Definition 2.5.1. For m,n ∈ N let βm,n : m + n → n +m be the morphism in h1K
b
loc(Sbim) given

by the chain homotopy class of the shifted Rouquier complex (Xm,n) defining the cabled crossing in
Definition 2.2.7.

Theorem 2.5.2 (Prebraiding for Soergel bimodules). The family of morphisms βm,n from Defini-
tion 2.5.1 constitute a prebraiding on the functor h1Kloc : h1BSbim→ h1K

b
loc(Sbim).

Considering h1Kloc : h1BSbim→ h1K
b
loc(Sbim) as a functor over h1DMorpoly,gr−perf(modZk) via the

functor h1Hloc : h1K
b
loc(Sbim)→ h1DMorpoly,gr−perf(modZk), we obtain the following refined version:

Corollary 2.5.3 (Relative prebraiding on h1Kloc). The Rouquier complexes of cabled crossings define

a prebraiding on h1Kloc : h1BSbim→ h1K
b
loc(Sbim) over h1DMorpoly,gr−perf(modZk).

Proof. By Remark 2.2.6, the braiding complexes are quasi-isomorphic to the associated permutation
bimodules, concentrated in homological degree 0. As the permutation bimodules implement the sym-
metric braiding, this means that the braiding complexes constructed as (shifted) Rouquier complexes

of the cabled crossings become the canonical symmetric braiding in h1DMorpoly,gr−perf(modZk). □
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The following result is the crucial naturality part for the proof of Theorem 2.5.2. The result is in
fact stronger than needed, since it is a statement on the chain level.

Theorem 2.5.4. For any Bott–Samelson bimodule of the form Y = Y1 ⊠ Y2 in BSbimm ⊠ BSbimn ⊂
Sbimm+n, there are homotopy equivalences of chain complexes in Chb(Sbimm+n):

slideY1,Y2 : Xm,n ◦1 Y −→ swapm,n(Y ) ◦1 Xm,n

We also use the notation slideY := slideY1,Y2
, when m and n are clear from the context.

Y1

Y2
slideY1,Y2−−−−−−→

Y2

Y1

Figure 2. Graphical illustration of slideY1,Y2—here in case (m,n) = (2, 3).

Proof of Theorem 2.5.2. Theorem 2.5.4 indeed implies Theorem 2.5.2. Namely it follows from The-
orem 2.2.4 that the βm,n are invertible and satisfy the hexagon axioms (2.15) and thus form the
components of a natural transformation ⊠ ◦ (h1Kloc × h1Kloc) ⇒ ⊠op ◦ (h1Kloc × h1Kloc) by Theo-
rem 2.5.4. □

To establish Theorem 2.5.4 we construct, after some preparation, the chain maps, which we then
call slide maps, explicitly. For this we work with the Hecke category DSn, i.e. the diagrammatical
presentation of the monoidal 1-category BSbimn from [EW16], [EK10a]. The construction of the
chain maps slideY1,Y2

proceeds in two steps. The first step is specific to the setting of Bott–Samelson
and Soergel bimodules and uses DS. It establishes the existence of atomic slide chain maps, namely
slide11,B1 for (m,n) = (1, 2) and slideB1,11 for (m,n) = (2, 1); see Lemma 2.5.5. The second step
uses that every Bott–Samelson bimodule is a composition (monoidal and horizontal) of Bott–Samelson
bimodules on two strands, and so knowing the atomic slide chain maps is sufficient to construct general
slide maps along the following scheme:

Y1

Y2
←

Bi

← Bi

Essentially the same argument would work for any monoidal bicategory generated by a single object
and one endomorphism of its tensor square.

To formulate the statements, we need at least a rough description of the Hecke category DSn and
the fact that it is equivalent to BSbim

gr

n as graded monoidal k-linear category. For details we refer to
[EW16], [EK10a]. Each simple reflection si ∈ Sn is encoded by a colour. Objects in DSn are finite
ordered sequences of such colours and they encode the Bott–Samelson bimodules in the form (2.4)

(with j = 0 since we consider BSbim
gr

n ). For instance if n = 2 and we encode s1 as red and s2 as
blue, then the Bott–Samelson bimodule Bi from (2.4) is encoded as a sequence of colors red and blue
according to i, for instance i = (1, 1, 2, 1, 1) corresponds to the object given by the color sequence
(red, red, blue, red, red). Morphisms in DSn are k-linear combinations of isotopy classes of certain
decorated graphs embedded in the plane. A morphism from Bi to Bi′ will have the colour sequence
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for i as bottom boundary and that for i′ at the top boundary; for instance the first two diagrams in
(2.17) represent morphism from (2, 2) to (2) and vice versa, the third goes from the unit to (2), etc.

The monoidal structure is given on objects by concatenating sequences and, on morphisms, by (the
bilinear extension of) placing diagrams horizontally next to each other. The composition of morphisms
is, likewise, given by (the bilinear extension of) stacking diagrams on top of each other. The empty
sequence is the unit object.

Apart from multiplication with polynomials, the generating morphisms (in the monoidal sense) are
exactly the following, where blue represents any color/number which is neighbored to red and not
neighbored to orange.

(2.17) , , , , ,

For the rest of this section we identify BSbimn with DSn as monoidal 1-categories (via BSbim
gr

n )
and perform computations using the diagrammatic calculus.

The Rouquier complexes (2.6) are translated into the diagrammatics as

q y
:=

( )
,

q y
:=

( )
(2.18)

where we encode si by blue. (Instead of remembering the grading shifts from (2.6), it is more convenient
in the diagrammatic setting to consider the maps as homogeneous of degree one). To keep track of the
monoidal unit (corresponding to R) appearing in the complexes, we mostly indicate them by a colored
dot as shown in (2.18).

Lemma 2.5.5. There are slide chain maps

slide11,B1
:=

r z

r z

−

−

[ ]
0 , slideB1,11

:=

r z

r z

−

−

[ ]
0

which are invertible up to homotopy. The inverses are given by the chain maps

slide−1
11,B1

:=

r z

r z

−

−

[ ]
0 , slide−1

B1,11
:=

r z

r z

−

−

[ ]
0

Proof. The proof is given by an explicit calculation. As an example (the remaining cases are checked
analogously) we show that slide−1

11,B1
◦ slide11,B1

is homotopic to the identity by computing their
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difference and exhibiting an explicit null-homotopy:

slide−1
11,B1

◦ slide11,B1 − Id =




−

−

[
0

−

]
−




=




d,

−

−

[
0

] [
0
−

]




□

Observe that the relevant chain complexes and chain maps are for the two cases are related by
swapping the colours red and blue.

Remark 2.5.6. Readers familiar with the chain maps between Rouquier complexes associated to a
Reidemeister III move will recognize the atomic slide chain maps as filtrations-preserving pieces of the
former, see e.g. [MWW22, (3.3) and (3.4)].

Now that we have obtained the atomic slide chain maps in Lemma 2.5.5, we can construct all
remaining slide chain maps in an essentially formal way.

Proof of Theorem 2.5.4. We will focus on the version for the positive cabled crossing, since the other
one is analogous. First, we reduce to the case when the object Y = Y1 ⊠ Y2 is a generating object of
BSbimm ⊠ BSbimn. Otherwise, we can decompose into generators:

Y1 ⊠ Y2 = (Y1 ⊠ 1) ◦1 (1⊠ Y2) = (Bi1 ⊠ 1) ◦1 · · · ◦1 (Bia ⊠ 1) ◦1 (1⊠Bj1) ◦1 · · · ◦1 (1⊠Bjb)

and define

slideY1,1 := (idswapm,n(Bi1
◦1···◦1Bia−1

⊠1) ◦1 slideBia ,1) ◦2 · · · ◦2 (slideBi1 ,1
◦1 idBi1◦1···◦1Bia−1

⊠1)

slide1,Y2 := (idswapm,n(1⊠Bj1◦1···◦1Bjb−1
) ◦1 slide1,Bjb

) ◦2 · · · ◦2 (slide1,Bj1
◦1 id1⊠Bj1

◦1···◦1Bjb−1
)

slideY1,Y2 := (idswapm,n(Y1⊠1) ◦1 slide1,Y2) ◦2 (slideY1,1 ◦1 idY2)

Now we turn to defining slideB,1n
and slide1m,B , where B is one of the generating Bott–Samelson

bimodules. Here we place subscripts to distinguish the identity bimodules. We first consider the latter
situation and reduce it to the casem = 1, where the cabled crossing is a Coxeter braid. Indeed, suppose
that m > 1, then we use the first equality from Lemma 2.2.8 to define slide1m,B to be the composite:

(
(slide11,B ⊠ id1m−1) ◦1 · · · ◦1 id1m−1−i⊠X1,n⊠1i

◦1 · · · ◦1 id1m−1⊠X1,n

)
◦2 · · ·

◦2
(
idX1,n⊠1m−1

◦1 · · · ◦1 (id1m−1−i ⊠ slide11,B ⊠ id1i) ◦1 · · · ◦1 id1m−1⊠X1,n

)
◦2 · · ·(2.19)

◦2
(
idX1,n⊠1m−1

◦1 · · · ◦1 id1m−1−i⊠X1,n⊠1i
◦1 · · · ◦1 (id1m−1 ⊠ slide11,B)

)

For the other case, we first choose chain maps φ and φ−1 realising the first homotopy equivalence in
Lemma 2.2.8. Then we define slideB,1n as the composition:

φ−1 ◦2
(
(1n−1 ⊠ slideB,11

) ◦1 · · · ◦1 id1i⊠Xm,1⊠1n−1−i
◦1 · · · ◦1 idXm,1⊠1n−1

)
◦2 · · ·

◦2
(
id1n−1⊠Xm,1

◦1 · · · ◦1 (id1i
⊠ slideB,11

⊠ id1n−1−i
) ◦1 · · · ◦1 idXm,1⊠1n−1

)
◦2 · · ·

◦2
(
id1n−1⊠Xm,1

◦1 · · · ◦1 id1i⊠Xm,1⊠1n−1−i
◦1 · · · ◦1 (slideB,11

⊠ 1n−1)
)
◦2 φ
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It remains to construct slide11,Bi
and slideBj ,11

where Bi is a generating object of BSbimn and Bj is
a generating object of BSbimm. Now we reduce this problem to the cases when n = 2 and m = 2
respectively. We define slide11,Bi as the composite:

F (σn · · ·σ1) ◦1 Bi =F (σn · · ·σi+1) ◦1 F (σiσi−1) ◦1 F (σi−2 · · ·σ1) ◦1 Bi

→F (σn · · ·σi+1) ◦1 F (σiσi−1) ◦1 Bi ◦1 F (σi−2 · · ·σ1)
slide−−−→F (σn · · ·σi+1) ◦1 Bi−1 ◦1 F (σiσi−1) ◦1 F (σi−2 · · ·σ1)
→Bi−1 ◦1 F (σn · · ·σi+1) ◦1 F (σiσi−1) ◦1 F (σi−2 · · ·σ1)
=Bi−1 ◦1 F (σn · · ·σ1)

where the unlabelled maps are far-commutativity isomorphisms and the labelled arrow is given by
id ◦1 slide11,B1

◦1 id, which is determined by the n = 2 case. The reduction of slideBj ,11
to the case

m = 2 is completely analogous.
Thus we reduced the problem to the statement from Lemma 2.5.5. By construction, all slide maps

constructed in this proof are homotopy equivalences. □

Remark 2.5.7. In Remarks 2.4.3 and 2.4.4 we have observed that a prebraiding need not satisfy the
braid relation, and that the braid relation in prebraidings on identity functors can be verified in two
ways using naturality. On the level of the homotopy category of Soergel bimodules, this is reflected
in the fact, that the chain maps implementing the homotopy equivalence corresponding to a braid
relation live in a 2-dimensional space [EK10b, Section 3, Reidemeister 3 generators]. One dimension
is encoding an overall non-zero scaling. Even after fixing this, there exists however a 1-dimensional
affine subspace of representatives of the same homotopy class of chain maps. Two distinct (and thus
spanning) points in this subspace can be built from slide chain maps, analogously to the two ways of
establishing the braid relation in Remark 2.4.4.

Remark 2.5.8. We used Rouquier canonicity to ensure here the independence (up to canonical iso-
morphism) of our choices in the construction of the prebraiding on h1Kloc in Theorem 2.5.2. For the
rest of the paper it would be enough to make one of the choices and establish the prepraiding using only
the monoidality of h1Kloc. The desired independence of choices (and in fact also Rouqiuer canonicity
itself) could then be deduced from the existence statement in Corollary 8.2.2.

2.6. Centralizers and prebraidings. In the following, given a monoidal 1-category C, we will identify
1⊠x and x⊠1 with x for any object x ∈ C, see [Eti+15, Rk. 2.2.9], and will suppress writing associators,
as they can be recovered from context.

Definition 2.6.1. Let A and B be monoidal 1-categories and let F : A → B be a monoidal functor.
The centralizer Z(F ) of F is the following category:

• Its objects are pairs (b, γ) of an object b ∈ B and a natural isomorphism

γ = γ− : b⊠ F (−)→ F (−)⊠ b
of functors from A to B, called half-braiding , which satisfies the following two compatibility
conditions with respect to the monoidal structure of A. Firstly, for any a1, a2 ∈ A, the
isomorphism γa1⊠a2

: b⊠ F (a1 ⊠ a2)→ F (a1 ⊠ a2)⊠ b equals the composite

b⊠ F (a1 ⊠ a2)
≃−→ b⊠ F (a1)⊠ F (a2)

(id⊠γa2 )◦(γa1⊠id)−−−−−−−−−−−−→ F (a1)⊠ F (a2)⊠ b
≃−→ F (a1 ⊠ a2)⊠ b,

and secondly

γ1A =
(
b⊠ F (1A)

≃−→ b⊠ 1B = 1B ⊠ b
≃−→ F (1A)⊠ b

)
.
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• Its morphisms are morphisms in B that are compatible with the half-braidings as follows:

HomZ(F )((b, γ), (b
′, γ′)) = {f ∈ HomB(b, b

′) | γ′a ◦ (f ⊠ id) = (id⊠ f) ◦ γa : b⊠ F (a)→ F (a)⊠ b}.

• The composition is inherited from B.

The category Z(F ) is monoidal with (b, γ) ⊠ (b, γ′) := (b ⊠ b′, γ ⊠ id ◦ id ⊠ γ′) on objects, and
with the tensor product from B on morphisms. The unit object 1Z(F ) ∈ Z(F ) is (1B ∈ B, γ) with
γa : 1⊠ F (a) = F (a) = F (a)⊠ 1. We leave the coherence isomorphisms and their compatibility to the
reader.

Remark 2.6.2. In case A = B and F = idA is the identity functor, the centralizer Z(idA) is the
Drinfeld center Z(A) of A, [Eti+15, Def. 7.13.1]. The generalized hexagon axiom above turns then
into the familiar hexagon diagram [Eti+15, (7.41)]. Centralizers, as generalizations of Drinfeld centers,
appear already in [Maj91, §3].

Definition 2.6.3. For a monoidal functor F : A → B, we define the monoidal evaluation functor

ev : Z(F )×A → B

to send an object ((b, γ), a) to b ⊠ F (a), and a morphism (f, g) to f ⊠ F (g). The monoidal structure
isomorphisms

ev (((b, γ), a)⊠ ((b′, γ′), a′)) ≃ ev ((b, γ), a)⊠ ev ((b′, γ′), a′)) (for a, a′ ∈ A, (b, γ), (b′, γ′) ∈ Z(F ))

are given by b ⊠ b′ ⊠ F (a ⊠ a′) ≃ b ⊠ b′ ⊠ F (a) ⊠ F (a′)
id⊠γ′

a⊠id−−−−−−→ b ⊠ F (a) ⊠ b′ ⊠ F (a′). The defining
properties of γ′ and the monoidality of F ensure that the necessary compatibilities hold, so that we
indeed get a monoidal functor.

Together with the unit 1Z(F ) ∈ Z(F ) and F : A → B, the evaluation functor fits into the following
commuting diagram of monoidal functors:

Z(F )×A

{∗} × A A B

ev
1Z(F )×idA

= F

In Example 7.4.4, we will discuss the universal property satisfied by Z(F ) with its monoidal evalu-
ation functor.

The functor ev is completely determined by the monoidal functor

ev1A := ev(−, 1A) : Z(F )→ B,

which sends an object (b, γ) ∈ Z(F ) to the underlying object b and a morphism in Z(F ) to the
underlying morphism in B. In these terms, ev(−, ?) = ev1A(−)⊠ F (?).

We obtain a classification of prebraidings on a monoidal functor F , Definitions 2.4.1 and 2.4.8, in
terms of the centralizer Z(F ) of F :

Theorem 2.6.4. Let F : A → B be a monoidal functor between monoidal 1-categories. Then the
following are equivalent:

(1) the set PreBraid(F ) of prebraidings on F ;
(2) the set of strict monoidal factorizations of F through ev1A : Z(F )→ B, i.e. the set of monoidal

functors s : A → Z(F ) such that ev1A ◦ s = F .
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(3) the 1-groupoid of weak monoidal factorizations of F through ev1A : Z(F )→ B, i.e. the groupoid
whose objects are pairs (s, η) of a monoidal functor s : A → Z(F ) and a monoidal natural
isomorphism η : ev1A ◦ s ⇒ F and whose morphisms (s, η) → (s′, η′) are monoidal natural
isomorphisms µ : s⇒ s′ such that(

ev1A ◦ s
ev1A◦µ
=====⇒ ev1A ◦ s′

η′

=⇒ F

)
=

(
ev1A ◦ s

η
=⇒ F

)
.

Proof. For the equivalence between (1) and (2), note that a factorization s must send, on the level of
objects, x to (F (x), γ) for some γ, and on the level of morphisms f to F (f). The isomorphisms used
for a prebraiding β uniquely define the isomorphisms encoded in a possible γ. The second hexagon
axiom from prebraidings (2.15) translates into the required properties of γ, whereas the first hexagon
translates into the monoidality of s.

The equivalence between (2) and (3) follows from abstract-nonsense: Recall that a monoidal functor
F : X → Z between monoidal 1-categories is called an isofibration if for all isomorphisms γ : z → z′

in Z and x ∈ X with F (x) = z, there exists an isomorphism µ : x → x′ with F (µ) = γ. It is then an
exercise to show that if F : X → Z is a monoidal functor which is a faithful isofibration and G : Y → Z
is another monoidal functor, the groupoid of weak monoidal factorizations, i.e. of pairs (s, η) of a
monoidal functor s : Y → X and a monoidal natural isomorphism F ◦ s ≃ G is equivalent to a discrete
groupoid isomorphic to the set of strict monoidal factorizations, i.e. the set of monoidal functors s
such that F ◦ s = G. The equivalence between (2) and (3) then follows since ev1A : Z(f)→ B is indeed
a faithful isofibration. □

Corollary 2.6.5. The special case F = idA for a monoidal category A gives a bijection

Braid(A) ≃ {Monoidal sections A → Z(A) of ev1A : Z(A)→ A}.
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3. Stable linear algebra

This section introduces the ∞-categorical foundations of our work. Throughout, we adopt standard
conventions and notations in higher category theory, which we recall in detail in Appendix A. We
follow [Lur09] and use Grothendieck universes — here called small, large, and huge — to deal with
set-theoretic issues (see Appendix A.6 for more details). In particular, we write Cat∞ for the large
∞-category of small ∞-categories and S for the (large) ∞-category of small spaces, both of which are

objects of the huge ∞-category Ĉat∞ of large ∞-categories.

3.1. Completions of ∞-categories.

3.1.1. The Yoneda embedding. Any small ∞-category C has a Yoneda embedding into its ∞-category
of (S-valued) presheaves P(C) = Fun(Cop,S), [Lur09, Prop. 5.1.3.1], see also [Cis19]. It is characterized
by the universal property that P(C) has all small colimits (i.e. is cocomplete) [Lur09, Cor. 5.1.2.4],
and that for any cocomplete ∞-category D the restriction along the Yoneda embedding induces an
equivalence

(3.1) FunL(P(C),D)→ Fun(C,D)
where FunL denotes the full subcategory of the∞-category of functors on those functors which preserve
all small colimits (i.e. the cocontinuous functors) [Lur09, Thm. 5.1.5.6], see also [Cis19, Thm. 6.3.13].
An ∞-category C is called idempotent complete if its image under the Yoneda embedding C → P(C) is
closed under retracts (see [Lur09, Proof of Prop. 5.1.4.2]). We refer to [Lur09, § 4.4.5] for a discussion
of retracts and idempotents in ∞-categories.

Notation 3.1.1. We write

• Catidem∞ for the full subcategory of Cat∞ on the idempotent complete small ∞-categories,

• Cat⊔,idem
∞ for the subcategory of Catidem∞ on the idempotent complete small ∞-categories that

admit finite coproducts and functors which preserve finite coproducts, and
• Catrex,idem∞ for the subcategory of Cat⊔,idem

∞ on the idempotent complete small ∞-categories
that admit finite colimits and functors which preserve finite colimits.

3.1.2. Presentable ∞-categories. In general, the presheaf category P(C) of a small ∞-category C is a
large category. The sense in which P(C) is nevertheless still controlled by a small amount of data is
formalized by the notion of a presentable ∞-category. We recall the definition and some basic facts
from [Lur09, Sec. 5.4 and 5.5].

Definition 3.1.2. Let D be a (possibly large) ∞-category.

(1) Let K be a collection of∞-categories and S a small set of objects of D. Then D is generated by
S under K-indexed colimits if D has all colimits indexed by categories in K and is the smallest
full subcategory of D which contains the objects in S and is closed under K-indexed colimits.

(2) Let κ be an infinite regular cardinal and assume D admits κ-filtered colimits. Then an object
d ∈ D is called κ-compact if the functor HomD(d,−) : D → S preserves κ-filtered colimits.

(3) The ∞-category D is called accessible if it is locally small and there exists a regular cardinal
κ and a small set S of κ-compact objects in C that generates C under κ-filtered colimits.

(4) The ∞-category D is called presentable if it has all small colimits and is accessible.

Example 3.1.3. By Simpson’s characterisation of presentable∞-categories as localizations of presheaf
categories, [Lur09, Thm. 5.5.1.1], we obtain presentability of P(C) for any small ∞-category C [Lur09,
Ex. 5.4.2.7, Ex. 5.5.1.8.], and more generally the presentability of Fun(C,D) for a small ∞-category C
and a presentable ∞-category D.

A main application of the notion of presentable ∞-category is the adjoint functor theorem:
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Proposition 3.1.4 ([Lur09, Cor. 5.5.2.9 and Rem. 5.5.2.10]). A functor from a presentable∞-category
to a locally small ∞-category preserves small colimits if and only if it is a left adjoint.

Notation 3.1.5. We denote by

• PrL the ∞-category of presentable ∞-categories and small colimit preserving functors, i.e left
adjoint functors by the adjoint functor theorem.

• FunL(C,D), for C,D ∈ PrL, the full subcategory of Fun(C,D) of left adjoint (equivalently
cocontinuous) functors. Dually, full subcategories of right adjoint functors will be denoted
FunR(−,−).

• When denoting an adjunction C D
L
⊥
R

between ∞-categories, we use the convention

that the top arrow is the left adjoint and the bottom arrow the right adjoint.

For more details, we refer to [Lur09, § 5.5.3] and [Cis19, § 7].

3.1.3. The monoidal structure on PrL and presentably symmetric monoidal categories.

Proposition 3.1.6 ([Lur17, Prop. 4.8.1.15, Prop. 4.8.1.10]). The ∞-category PrL can be equipped with
a symmetric monoidal structure for which the Yoneda embedding defines a symmetric monoidal functor

P : Cat∞ → PrL

where Cat∞ is equipped with its Cartesian symmetric monoidal structure.

The tensor unit of this symmetric monoidal structure is given by the presentable ∞-category S
of spaces. The tensor product C1 ⊗ C2 of two presentable ∞-categories C1, C2 comes equipped with a
functor C1×C2 → C1⊗C2 which preserves small colimits separately in both variables and is characterized
by the universal property that for any presentable ∞-category D, the induced functor

FunL(C1 ⊗ C2,D)→ FunL×L(C1 × C2,D)
is an equivalence. Here, FunL×L(C1 × C2,D) denotes the full subcategory of Fun(C1 × C2,D) on those
functors which preserve small colimits separately in both variables. Abusing notation, given objects
c1 ∈ C1 and c2 ∈ C2 we denote the image of (c1, c2) ∈ C1 × C2 under the functor C1 × C2 → C1 ⊗ C2 by
c1 ⊠ c2 ∈ C1 ⊗ C2 and call it their external tensor product.

It follows from [Lur17, Prop. 4.8.1.17, Prop. 4.8.1.16] after taking adjoints, that the tensor product
of presentable ∞-categories can be expressed as the following functor category (which is in particular
presentable):

(3.2) C ⊗ D ≃ FunL(D, Cop)op = FunR(Cop,D)
The symmetric monoidal structure on PrL allow us to study (commutative) algebras therein, see

Appendix A.8.4.

Definition 3.1.7. A presentably symmetric monoidal ∞-category is a commutative algebra object in
PrL.

More explicitly, a presentably symmetric monoidal∞-category is a symmetric monoidal∞-category
whose underlying∞-category C is presentable and so that the tensor product functor −⊗− : C×C → C
preserves small colimits separately in both variables.

If A is a commutative algebra object in a symmetric monoidal∞-category C, consider the∞-category
ModA(C) of left A-modules in C (see Appendix A.9).

Proposition 3.1.8. Given C,D ∈ CAlg(PrL), together with A,B ∈ CAlg(C).
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(1) The relative tensor product − ⊗A − : ModA(C) ×ModA(C) → ModA(C) defines a presentably
symmetric monoidal structure on ModA(C). Moreover, there is an equivalence CAlg(ModA(C)) ≃
CAlg(C)A/.

(2) Any algebra homomorphism f : A → B in CAlg(C) induces a symmetric monoidal induction
functor − ⊗A B : ModA(C) → ModB(C) that is left adjoint to the restriction functor along f ,

and hence a morphism in CAlg(PrL).
(3) For any algebra homomorphism A → B, it follows from (2) that we can view B as an object

in CAlg(ModA(C)). Forgetting the A-action induces a symmetric monoidal equivalence:

ModB(ModA(C)) ≃−→ ModB(C)
(4) Any functor F : C → D in CAlg(PrL) induces a functor CAlg(C)→ CAlg(D) on commutative

algebra objects, which we will also simply denote by F . Moreover, it induces a functor

ModA(F ) : ModA(C)→ ModF (A)(D)
in CAlg(PrL).

(5) Any functor F : C → D in CAlg(PrL) induces an equivalence in CAlg(PrL)

D ⊗C (ModA(C)) ≃ ModF (A)(D),
where −⊗C − denotes the pushout in CAlg(PrL), whose underlying presentable ∞-category is

given by the relative tensor product in PrL [Lur17, Prop. 3.2.4.10], hence the notation.

Proof. The first two statements follow from [Lur17, Prop. 3.4.1.3, Cor. 4.2.3.7, Thm. 4.5.3.1], the
third statement follows from [Lur17, Cor. 3.4.1.9]. The existence of the symmetric monoidal functor
ModA(F ) in part (4) follows from the functoriality of the Mod construction in [Lur17, § 3.3.3]. Fur-
thermore, ModA(F ) preserves colimits by [Lur17, Cor. 4.2.3.5]. Functoriality of the construction of

modules induces a commuting square in CAlg(PrL)

C ≃ Mod1C (C) D ≃ Mod1D (D)

ModA(C) ModF (A)(D)

F≃Mod1C (F )

ModA(F )

and hence a morphism in CAlg(PrL) from the pushout D ⊗C ModA(C) → ModF (A)(D). This is an

equivalence in CAlg(PrL) because its underlying functor is one by [Lur17, Thm. 4.8.4.6]. □

Since S is the tensor unit of the symmetric monoidal structure on PrL, it is initial in CAlg(PrL) and

any C ∈ CAlg(PrL) comes equipped with a unique symmetric monoidal left adjoint functor ιC : S → C.
Corollary 3.1.9. For Z ∈ CAlg(S), Proposition 3.1.8.(5) implies that there is an equivalence in

CAlg(PrL):

C ⊗ModZ(S) ≃ C ⊗S ModZ(S) ≃ ModιC(Z)(C ⊗S S) ≃ ModιC(Z)(C).
3.1.4. Adjoining colimits.

Notation 3.1.10. For a small set K of simplicial sets, let CatK∞ denote the subcategory of Cat∞
on those small ∞-categories which admit colimits of diagrams indexed by elements of K, and those
functors which preserve such colimits.

The ∞-categories Catidem∞ ,Cat⊔,idem
∞ and Catrex,idem∞ from Notation 3.1.1 are instances of CatK∞ for

K consisting of the ‘walking idempotent’ of [Lur09, § 4.4.5], or the walking idempotent together with
the set of finite (discrete) sets or the set of finite simplicial sets, respectively.
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Just like the presheaf ∞-category P(C) is the free completion of a small ∞-category C under small
colimits, we may complete under other classes of colimits. The following combines [Lur17, Lem. 4.8.4.2,
Rem. 4.8.1.8] and [Lur09, Cor. 5.3.6.10]:

Proposition 3.1.11. Let K be a small set of simplicial sets.

(1) The ∞-category CatK∞ is presentable and admits a presentably symmetric monoidal structure,

which can be characterized as follows: If C,D ∈ CatK∞, the tensor product C ⊗ D is equipped
with a functor C×D → C⊗D which preserves K-colimits separately in both variables and which
induces for all E ∈ CatK∞ an equivalence

FunK(C ⊗ D, E)→ FunK×K(C × D, E),
where FunK(C ⊗ D, E) denotes the full subcategory of Fun(C ⊗ D, E) on those functors which

preserve K-colimits and where FunK×K(C ×D, E) denotes the full subcategory of Fun(C ×D, E)
on those functors which preserve K-colimits separately in both variables.

(2) Let K′ be a small set of simplicial sets with containing K. Then the subcategory inclusion

CatK
′

∞ → CatK∞ admits a symmetric monoidal left adjoint

PK′

K : CatK∞ → CatK
′

∞

whose unit C → PK′

K (C) for C ∈ CatK
′

∞ is a fully faithful functor.

The second statement of Proposition 3.1.11 implies that C ↪→ PK′

K (C) may be thought of as a
generalized Yoneda embedding: It is the free cocompletion of C under K′-shaped colimits subject to
the relation that K-shaped colimits in C are preserved.

3.2. Compact generation and ind-completion.

3.2.1. Compact and projectively generated ∞-categories. Many presentable∞-categories are generated
by ω-compact objects, where ω is the cardinality of the natural numbers. We will henceforth refer to
ω-filtered diagrams simply as filtered diagrams and to ω-compact objects as compact objects. Hence,
an object c of an∞-category C with filtered colimits is compact if HomC(c,−) : C → S preserves filtered
colimits.

Similarly, we recall the following definitions:

Definition 3.2.1. (1) An object c of an ∞-category C with geometric realizations (i.e. colimits
indexed by ∆op) is called projective [Lur09, Def. 5.5.8.18] if HomC(c,−) : C → S preserves
geometric realizations.

(2) An object c of an ∞-category C with sifted colimits [Lur09, Def. 5.5.8.1] is called compact-
projective if HomC(c,−) : C → S preserves sifted colimits [Lur09, Rem. 5.5.8.20].

Observation 3.2.2. Since sifted colimits are generated by filtered colimits and geometric realiza-
tions [Lur09, Cor. 5.5.8.17], an object is compact-projective if and only if it is compact and projective.

We refer to Definition 3.6.1 and Example 3.6.3 for a comparison with classical notions of compactness
and projectivity in ordinary (abelian) categories.

Definition 3.2.3. We will use the following terminology.

(1) A compactly generated ∞-category is an∞-category with small colimits, for which there exists
a small set of compact objects which generates C under small colimits.

(2) A projectively generated ∞-category is an ∞-category with small colimits, for which there
exists a small set of compact-projective objects which generates C under small colimits.
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Notation 3.2.4. Let PrL,c (resp. PrL,cp) denote the subcategory of PrL on the compactly (resp.
projectively) generated presentable∞-categories and the cocontinuous functors which preserve compact
(resp. compact-projective) objects.

Lemma 3.2.5. Consider an adjunction between ∞-categories

C D
L
⊥
R

.

(1) If C is compactly generated and D has filtered colimits, then the left adjoint L preserves compact
objects if and only if the right adjoint R preserves filtered colimits.

(2) If C is projectively generated and D has sifted colimits, then the left adjoint L preserves compact-
projective objects if and only if the right adjoint R preserves sifted colimits.

Proof. We prove the first statement; the proof of the second statement is analogous. Suppose R
preserves filtered colimits and c ∈ C is compact. Then, for every filtered diagram d : I → D we have

HomC(Lc, colimidi) ≃ HomD(c,Rcolimidi) ≃ HomD(c, colimiRdi)

≃ colimiHomD(c,Rdi) ≃ colimiHomD(Lc, di)

and hence Lc is compact. Conversely, suppose that L preserves compact objects. It follows that for a
compact object c ∈ C and a filtered diagram d : I → D, we have

HomC(c,R(colimidi)) ≃ HomD(Lc, colimidi) ≃ colimiHomD(Lc, di)

≃ colimiHomC(c,Rdi) ≃ HomC(c, colimiRdi).

Since C is compactly generated, every object in C is a small colimit of compact objects, and thus
colimiRdi ≃ Rcolimidi. □

Corollary 3.2.6. The ∞-category PrL,cp is a subcategory of PrL,c.

Proof. A projectively generated presentable ∞-category is also compactly generated since compact-
projective objects are in particular compact. Thus, we only need to show that a left adjoint functor L
between projectively generated presentable ∞-categories, which preserves compact-projective objects,
also preserves compact objects. Indeed, by Lemma 3.2.5.(2), L has a right adjoint which preserves
sifted colimits and hence preserves filtered colimits. Applying the reverse direction of Lemma 3.2.5.(1)
now shows that L preserves compact objects. □

Observation 3.2.7. Let C be a cocomplete ∞-category.

(1) The full subcategory Cc of compact objects is closed under retracts and finite colimits [Lur09,

Cor. 5.3.4.15 and Rem. 5.3.4.16] and hence yields an object Cc ∈ Catrex,idem∞ . This defines a

functor (−)c : PrL,c → Catrex,idem∞ .
(2) The full subcategory Ccp of compact-projective objects is closed under retracts and finite co-

products [Lur09, Rem. 5.5.8.19] and hence defines an object Ccp ∈ Cat⊔,idem
∞ . This defines a

functor (−)cp : PrL,cp → Cat⊔,idem
∞ .

In Proposition 3.2.8 we will show that these functors are in fact equivalences.

3.2.2. Ind-completion. The ind-completion Ind(C) of a small∞-category C is defined to be the smallest
full subcategory of P(C) which contains the image of the Yoneda embedding and is closed under filtered
colimits, [Lur09, Rem. 5.3.5.2, Prop. 5.3.5.3]. Then, Ind(C) has filtered colimits and the inclusion
C → Ind(C) is characterized by the universal property that for any∞-category D with filtered colimits,
it induces an equivalence

(3.3) Funω(Ind(C),D)→ Fun(C,D),
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where Funω denotes the full subcategory of functors which preserve filtered colimits.
If C moreover has finite colimits, then Ind(C) is equivalent to the full subcategory of P(C) on those

functors Cop → S which send finite colimits in C to finite limits of spaces by [Lur09, Cor. 5.3.5.4].
In this case, Ind(C) is presentable, the inclusion C → Ind(C) preserves finite colimits, and for any
presentable ∞-category D, the induced functor

FunL(Ind(C),D)→ Funrex(C,D)
is an equivalence by [Lur09, Cor. 5.3.5.10], where Funrex denotes the full subcategory of functors which
preserve finite colimits. For more details see [Lur09, Section 5.3].

Similarly, the PΣ-completion PΣ(C) of a small∞-category C is the smallest full subcategory of P(C)
that contains the image of the Yoneda embedding and is closed under sifted colimits. The ∞-category
PΣ(C) has sifted colimits and the inclusion C → PΣ(C) is characterized by the universal property that
for any ∞-category D with sifted colimits, it induces an equivalence

FunΣ(PΣ(C),D)→ Fun(C,D),
where FunΣ denotes the full subcategory of functors which preserve sifted colimits, [Lur09, Prop. 5.5.8.15].

If C moreover has finite coproducts, then PΣ(C) is equivalent to the full subcategory of P(C) on
those functors Cop → S which send finite coproducts in C to finite products of spaces [Lur09, Def.
5.5.8.8 and Rem. 5.5.8.16.(1)]. In this case, PΣ(C) is presentable, the inclusion C → PΣ(C) preserves
finite coproducts and for any presentable ∞-category D, the induced functor

FunL(PΣ(C),D)→ Fun⊔(C,D)
is an equivalence, where Fun⊔ denotes the full subcategory of functors which preserve finite coprod-
ucts [Lur09, Rem. 5.5.8.16(iii)], see [Lur09, § 5.5.8] for details.

Proposition 3.2.8. The following hold.

(1) The Ind-completion restricts to an equivalence Ind: Catrex,idem∞ → PrL,c inverse to the functor
(−)c from Observation 3.2.7.(1).

(2) The PΣ-completion restricts to an equivalence PΣ : Cat⊔,idem
∞ → PrL,cp inverse to the functor

(−)cp from Observation 3.2.7.(2).

(3) The composite Cat⊔,idem
∞ ≃ PrL,cp → PrL,c ≃ Catrex,idem∞ is left adjoint to the subcategory

inclusion Catrex,idem∞ → Cat⊔,idem
∞ .

(4) The ∞-categories PrL,c and PrL,cp are presentable and the inclusion functor PrL,cp → PrL,c is

cocontinuous, i.e. a morphism in PrL.

Proof. The first statement is [Lur17, Lem. 5.3.2.9] for κ = ω, also see [Lur09, Prop. 5.5.7.8].
To prove the second statement, we note that [Lur09, Cor. 5.3.6.10, Rem. 5.5.8.16] implies that

PΣ(−) defines a functor from Cat⊔,idem
∞ to the huge ∞-category Ĉat

cocpl

∞ of large ∞-categories which
admit all small colimits and colimit preserving functors. By [Lur09, Prop. 5.5.8.10], PΣ(C) is an
accessible localization of P(C) and hence is presentable, so that PΣ factors through the full subcategory

PrL of Ĉat
cocpl

∞ . By [Lur09, Prop. 5.5.8.22], every object in the image of the Yoneda embedding
C ↪→ PΣ(C) is compact-projective, and since PΣ(C) is a localization of P(C), it is generated under small
colimits by objects in C; hence PΣ(C) is projectively generated. Moreover, by [Lur09, Prop. 5.5.8.25],
the compact-projective objects of PΣ(C) are precisely the objects in (the essential image of) C (note:

this uses that C is idempotent complete). Therefore, for any morphism f : C → D in Cat⊔,idem
∞ the

cocontinuous functor PΣ(f) : PΣ(C)→ PΣ(D) preserves compact-projectives; hence PΣ : Cat⊔,idem
∞ →

PrL factors through the subcategory PrL,cp → PrL. To show that it factors as an equivalence, notice
that it is fully faithful since for C,D ∈ Cat⊔,idem

∞ ,

Fun⊔(C,D) ≃ Fun⊔(C,PΣ(D)cp) ≃ FunL,cp(PΣ(C),PΣ(D))
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where the first equivalence uses that D ≃ PΣ(D)cp and the second equivalence uses that for any
presentable E , the map FunL(PΣ(C), E)→ Fun⊔(C, E) is an isomorphism (this follows e.g. from [Lur09,
Prop. 5.5.8.10]) and the fact that C ≃ PΣ(C)cp. Lastly, surjectivity on objects follows since by [Lur09,
Prop. 5.5.8.25] any projectively generated presentable ∞-category D is equivalent to PΣ(C) where C
is the smallest full subcategory of D spanned by finite coproducts of objects in the set S of compact-
projective generators.

The third statement follows since the induced composite Cat⊔,idem
∞ → Catrex,idem∞ sends C to PΣ(C)c,

which in the notation of Proposition 3.1.11 is equivalent to PK′

K (C) for K the collection of finite sets
together with the ‘walking idempotent’ Idem of [Lur09, Sec. 4.4.5] and K′ the collection of finite

categories together with Idem. Hence, by Proposition 3.1.11.(2) this functor Cat⊔,idem
∞ → Catrex,idem∞

is left adjoint to the forgetful functor Catrex,idem∞ → Cat⊔,idem
∞ . The fourth statement then follows from

the previous ones and Proposition 3.1.11.(1), since Cat⊔,idem
∞ and Catrex,idem∞ are presentable and since

the functor PrL,cp → PrL,c is equivalent to Cat⊔,idem
∞ → Catrex,idem∞ and hence a left adjoint. □

Given a presentable ∞-category projectively/compactly generated by a small set S of objects, then
the objects in this set also generate the full subcategories Ccp, or Cc, respectively:
Lemma 3.2.9. The following hold.

(1) Let C ∈ PrL,cp and S a small set of compact-projective generators. Then the set S ⊆ Ccp
generates the full subcategory Ccp under retracts and finite coproducts. In particular, every
compact-projective object in C is a retract of a finite coproduct of objects in S.

(2) Let C ∈ PrL,c and S a small set of compact generators. Then the set S ⊆ Cc generates the full
subcategory Cc under retracts and finite colimits. In particular, every compact object in C is a
retract of an iterated finite colimit of objects in S.

Proof. The first statement is [Lur09, Prop. 5.5.8.25.(2).(iii)], the proof of the second statement is
analogous. □

Proposition 3.2.10. The symmetric monoidal structure of PrL restricts to presentably symmetric
monoidal structures on the subcategories PrL,cp and PrL,c of PrL.

Together with the symmetric monoidal left adjoint of the forgetful functor Catrex,idem∞ → Cat⊔,idem
∞

from Proposition 3.1.11.(2), the symmetric monoidal subcategory inclusion PrL,cp → PrL,c assemble

into a commutative diagram in CAlg(PrL):

(3.4)

PrL,cp PrL,c

Cat⊔,idem
∞ Catrex,idem∞

PΣ ≃ Ind ≃

Proof. Recall from Proposition 3.1.11 the functor Cat⊔,idem
∞ → Catrex,idem∞ in CAlg(PrL) which is left

adjoint to the forgetful functor. By Proposition 3.2.8.(3), this functor is equivalent to the composite

Cat⊔,idem
∞ ≃ PrL,cp → PrL,c ≃ Catrex,idem∞ for the subcategory inclusion PrL,cp → PrL,c. Hence,

this induces presentably symmetric monoidal structures on PrL,cp and PrL,c and on the inclusion
PrL,cp → PrL,c.

It remains to show that the subcategory inclusion PrL,c → PrL is symmetric monoidal which follows

since the composite Catrex,idem∞
Ind−−→ PrL,c → PrL is [Lur17, Lem. 5.3.2.11]. □

Recall that any presentably symmetric monoidal ∞-category C comes equipped with a unique sym-
metric monoidal left adjoint functor ιC : S → C. We now show that the unique symmetric monoidal
left adjoint ιPrL,cp : S → PrL,cp sends a space X to the presheaf category P(X).
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Lemma 3.2.11. The symmetric monoidal functor P(−) : S ↪→ Cat∞ → PrL factors through the

symmetric monoidal subcategory PrL,cp → PrL. The induced symmetric monoidal functor S → PrL,cp

is a left adjoint, and hence is the unit ιPrL,cp : S → PrL,cp of the presentably symmetric monoidal
∞-category PrL,cp.

Proof. For any small ∞-category C, the presheaf category P(C) is generated by a small set of tiny
objects, i.e. objects c ∈ C for which HomC(c,−) : C → S preserves all small colimits; such a small set of
tiny objects is for example provided by the objects of C itself. Moreover, any functor F : C → D induces
a left adjoint functor P(F ) : P(C) → P(D) which preserves tiny objects. By an argument entirely
analogous to the proof of Corollary 3.2.6, it follows that P(C) is in particular projectively generated,

and that P(F ) preserves compact-projectives. Hence, the symmetric monoidal functor P : Cat∞ → PrL

factors through the symmetric monoidal subcategory PrL,cp from Proposition 3.2.10. Moreover, the
functor Cat∞ → PrL,cp is a left adjoint since after composing with the equivalence PrL,cp ≃ Cat⊔,idem

∞
from Proposition 3.2.8 it becomes equivalent to the left adjoint Cat∞ → Cat⊔,idem

∞ of the forgetful

functor. Since moreover S → Cat∞ is a left adjoint, so is the composite S → Cat∞ → PrL,cp. □

It follows from Lemma 3.2.9 that for C,D ∈ CAlg(PrL,c) (resp. in CAlg(PrL,cp)), the compact (resp.
compact-projective) objects of the tensor product C ⊗D are retracts of iterated finite colimits (retracts
of finite coproducts) of external tensor products of compact (resp. compact-projective) objects.

Explicitly, a commutative algebra C ∈ CAlg(PrL,c) (and analogously for PrL,cp) therefore amounts
to a presentably symmetric monoidal ∞-category C, whose underlying presentable ∞-category is com-
pactly generated, so that its unit is compact, and if c, d are compact objects in C, then c ⊗ d is also
compact.

Lemma 3.2.12. Given C ∈ CAlg(PrL,cp) and A ∈ Alg(C), the following hold:

(1) The ∞-category RModA(C) of right A-modules (see Appendix A.9.1) is in PrL,cp.

(2) The action functor C⊗RModA(C)→ RModA(C) is in PrL,cp, thus RModA(C) ∈ ModC(Pr
L,cp).

(3) If S is a set of compact projective generators of C, then the free modules {c ⊗ AA}c∈S are
compact projective generators of RModA(C).

(4) Furthermore, if C ∈ CAlg(PrL,cp), then ModA(C) together with its symmetric monoidal relative

tensor product is in CAlg(PrL,cp).

Given C ∈ CAlg(PrL,c) and A ∈ Alg(C), the following hold:

(5) The ∞-category RModA(C) of right A-modules (see Appendix A.9.1) is in PrL,c.

(6) The action functor C ⊗ RModA(C)→ RModA(C) is in PrL,c, thus RModA(C) ∈ ModC(Pr
L,c).

(7) If S is a set of compact generators of C, then the free modules {c ⊗ AA}c∈S are compact
generators for RModA(C).

(8) Furthermore, if A ∈ CAlg(C), then ModA(C) together with its symmetric monoidal relative

tensor product is in CAlg(PrL,c).

Proof. Statements (1) to (3) are proven in [Lur17, Cor. 7.1.4.14], statement (4) is an immediate
consequence. Statements (5) to (8) can be proven analogously (and also follow from the proof of [Lur17,
Lem. 5.3.2.12 (3)]).

□

3.3. Additive and stable ∞-categories. Here, we briefly review the theory of additive and stable
∞-categories. For more details, we refer to [Lur17], [BFN10] and [GGN15].

3.3.1. Definitions. An ∞-category is called zero-pointed if it has an initial and a terminal object and
if the unique morphism from the initial to the terminal object is an isomorphism. In this case, we
call the initial/terminal object a zero object. A zero-pointed ∞-category is called semi-additive if it
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furthermore has finite products and finite coproducts and if the canonical morphism x ⊔ y → x× y is
an isomorphism. In this case, we write the product/coproduct as x⊕ y and refer to it as a direct sum.
A semi-additive ∞-category is called additive if furthermore the shear map (π1,∇) : x⊕ x→ x⊕ x is
an isomorphism, where π1 : x⊕ x→ x denotes the projection to the first factor (using that x⊕ x is a
product) and∇ : x⊕x→ x is the fold map (using that x⊕x is a coproduct). A functor between additive
∞-categories is called additive if it preserves finite coproducts. We denote the ∞-category of additive
functors between two additive ∞-categories A,B by Fun⊔(A,B). This ∞-category is itself an additive
∞-category [GGN15, Cor. 2.9]. The notion of an additive ∞-category is a direct generalization of
the ordinary 1-categorical notion, and indeed an ordinary 1-category is additive in the usual sense if
and only if it(s nerve) is additive in the ∞-categorical sense. Conversely, a semi-additive ∞-category
C is additive if and only if its homotopy category h1C is additive as an ordinary 1-category [GGN15,
Prop. 2.8].

A zero-pointed ∞-category is called stable if it admits finite colimits and if any square is a pullback
square if and only if it is a pushout square. A functor between stable ∞-categories is called exact if
it preserves finite colimits. Given two stable ∞-categories C,D, we denote the ∞-category of exact
functors between them by Funex(C,D). This ∞-category Funex(C,D) is itself stable since it is a full
subcategory of Fun(C,D) (which is stable by [Lur17, Prop. 1.1.3.1]) that contains the zero object and
is stable under forming fibers and cofibers, as a straightforward computation shows. In what follows,
we will only consider idempotent complete stable categories.

Notation 3.3.1. We use the following notation:

• add for the full ∞-subcategory of Cat⊔,idem
∞ consisting of additive, idempotent complete, small

∞-categories.
• st for the full ∞-subcategory of Catrex,idem∞ consisting of stable, idempotent complete, small
∞-categories.

Since stable ∞-categories are additive and exact functors preserve finite coproducts, there is a
forgetful functor st→ add.

Warning 3.3.2. All additive and stable ∞-categories will be implicitly assumed to be idempotent
complete. In particular, we have defined add and st as full subcategories of Cat⊔,idem

∞ and Catrex,idem∞ .

As in Section 3.1 (in particular Proposition 3.2.8), it will be useful to characterize small additive or
stable ∞-categories in terms of projectively resp. compactly generated presentable ∞-categories.

Notation 3.3.3. Following Definition 3.2.3, we use the following notations:

• PrLst for the full subcategory of PrL on the stable, presentable ∞-categories and PrLadd for the
full subcategory on the additive, presentable ∞-categories.

• PrL,cst for the full subcategory of PrL,c on the stable presentable ∞-categories which are com-

pactly generated as ∞-categories, and PrL,cpadd for the full subcategory of PrL,cp on the additive
presentable ∞-categories which are projectively generated as ∞-categories.

Proposition 3.3.4. The following hold.

(1) The equivalence PΣ : Cat⊔,idem
∞ → PrL,cp restricts to an equivalence between full subcategories

PΣ : add
≃−→ PrL,cpadd .

Its inverse is (−)cp which takes a projectively generated additive presentable ∞-category C to
its full subcategory Ccp on the compact-projective objects.

(2) The equivalence Ind: Catrex,idem∞ → PrL,c restricts to an equivalence between full subcategories

Ind: st
≃−→ PrL,cst .
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Its inverse is (−)c which takes a compactly generated stable presentable ∞-category C to its full
subcategory Cc on the compact objects.

Proof. We will prove part (1), the proof of part (2) is entirely analogous and can for example be found

in [BGT13, Lem. 2.20]. Recall from Proposition 3.2.8 that PΣ : Cat⊔,idem
∞ → PrL,cp is an equivalence,

whose inverse is (−)cp. To prove statement (1), it therefore suffices to show that the essential image of

the composite add ↪→ Cat⊔,idem
∞ ≃ PrL,cp is the full subcategory PrL,cpadd .

If C is a small additive ∞-category, then PΣ(C) ≃ Fun⊔(Cop,S) is additive by [GGN15, Cor. 2.9].
On the other hand, if D is any projectively generated additive presentable category, then the full
subcategory on its compact-projective objects is closed under finite coproducts and hence is again
additive. Therefore, D is in the image of add ↪→ PrL,cp. □

3.3.2. Symmetric monoidal structure. The universal example of an stable presentable ∞-category is
the∞-category Sp of spectra. Likewise, the universal example of an additive presentable∞-category is
the ∞-category Sp≥0 of connective spectra, equivalent to the ∞-category GrpE∞

(S) of grouplike E∞-

spaces, see [GGN15]. Both Sp and Sp≥0 are idempotent algebras in PrL, i.e. commutative algebras

A ∈ CAlg(PrL) so that the multiplication A ⊗ A → A is an isomorphism. It is shown in [Lur17,

Prop. 4.8.2.18] and [GGN15, Cor. 4.8] that the full subcategories ModSp(Pr
L) and ModSp≥0

(PrL) of

PrL are equivalent to PrLst and PrLadd, respectively. As categories of modules of a commutative algebra,

this induces symmetric monoidal structures on PrLst and PrLadd respectively by Proposition 3.1.8.(1).
By [Lur17, Prop. 1.4.3.7], the ∞-category Sp is compactly generated (by the single object S, the

sphere spectrum). It follows from Lemma 3.2.9 that the compact objects in Sp are finite spectra,
i.e. finite colimits of the sphere spectrum (note that a retract of a finite spectrum is again finite).
However, Sp is not projectively generated (its only projective object is the zero spectrum, cf. [Lur17,
Rem. 7.2.2.5]). On the other hand, Sp≥0 is projectively generated by the sphere spectrum [Lur17, Cor.
7.1.4.13]. It therefore follows from Lemma 3.2.9 that the compact-projective objects in Sp≥0 are finite
sums of the sphere spectrum (note that a retract of a finite sum of sphere spectra is again a finite sum
of sphere spectra).

Lemma 3.3.5. The following hold.

(1) The equivalence ModSp≥0
(PrL)

≃−→ PrLadd restricts to an equivalence between the subcategories

ModSp≥0
(PrL,cp)

≃−→ PrL,cpadd .

(2) The equivalence ModSp(Pr
L)

≃−→ PrLst restricts to an equivalence between the subcategories

ModSp(Pr
L,c)

≃−→ PrL,cst .

Proof. We prove the first statement, the second is analogous. The ∞-category ModSp≥0
(PrL,cp) may

be understood as the subcategory of ModSp≥0
(PrL) on those presentable Sp≥0-module ∞-categories C

whose underlying ∞-category is projectively generated and for which the action functor Sp≥0⊗C → C
preserves compact-projectives, and those cocontinuous Sp≥0-module functors C → D for which the

underlying functor preserves compact projectives. In particular, the equivalence ModSp≥0
(PrL) →

PrLadd restricts to a fully faithful functor ModSp≥0
(PrL,cp)→ PrL,cpadd . It therefore suffices to verify that

for an additive presentable ∞-category C, the action Sp≥0 ×C → C sends a pair of compact-projective

objects (a, b) ∈ Spcp≥0 × Ccp to a compact-projective of C. This follows since any compact projective in
Sp≥0 is generated under finite coproducts and retracts by the unit object S; see Lemma 3.2.9. □

Using the theory of commutative algebras in presentable categories, we immediately obtain the
following stable and additive analogues of the first half of Proposition 3.2.10 concerning symmetric

monoidal structures on subcategories of PrL. The passage from PrL,cpadd ≃ add to PrL,cst ≃ st will be
treated in the next section.
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Corollary 3.3.6. The following hold.

(1) The symmetric monoidal structure of PrLadd restricts to a presentably symmetric monoidal

structure on the subcategory PrL,cpadd , which induces a presentably symmetric monoidal structure

on the ∞-category add via the equivalence PΣ : add
≃−→ PrL,cpadd .

(2) The symmetric monoidal structure of PrLst restricts to a presentably symmetric monoidal struc-

ture on the subcategory PrL,cst → PrLst, which induces a presentably symmetric monoidal structure

on the ∞-category st via the equivalence Ind: st
≃−→ PrL,cst .

Proof. Since PrL,cpadd and PrL,cst are module categories by Lemma 3.3.5, they inherit via Proposition 3.1.8.(1)

presentably symmetric monoidal structures from the presentably symmetric monoidal categories PrL,c

and PrL,cp (see Proposition 3.2.10), respectively. Symmetric monoidality of the functors PrL,cst → PrLst
and PrL,cpadd → PrLadd follows from symmetric monoidality of PrL,c → PrL and PrL,cp → PrL. □

Tracing through the proof, the symmetric monoidal structures on add respectively st may be char-
acterized as follows (c.f. [BFN10, Prop. 4.4]): For C,D ∈ add the tensor product C ⊗ D is equipped
with a functor C ×D → C ⊗D, additive in both variables, and satisfies the universal property that for
any E ∈ add the induced functor

Funadd(C ⊗ D, E)→ Funadd×add(C × D, E)
is an equivalence, where Funadd×add(C × D, E) denotes the full subcategory of Fun(C × D, E) on the
functors which are additive in both variables (i.e. which preserve finite coproducts separately in either
variable).

For C,D ∈ st, the tensor product C ⊗D is characterized analogously in terms of functors C ×D → E
which are exact in both variables (i.e. which preserve finite colimits separately in both variables).

Warning 3.3.7. As in Warning 3.3.2, the ∞-categories add and st are the ∞-categories of additive,
resp. stable, idempotent complete ∞-categories. In particular, the tensor product of additive/stable
idempotent complete ∞-categories we consider here is automatically idempotent complete.

3.4. From additive to stable∞-categories. Given an ordinary additive 1-categoryA, one may form
a stable ∞-category Kb(A) of bounded (in both directions) chain complexes, chain homomorphisms,
and (higher) chain homotopies between these. In this section, we review this construction and prove
that it satisfies a universal property: the stable ∞-category Kb(A) is the free stable ∞-category on
the additive category A.
3.4.1. The ∞-category of chain complexes. Given an ordinary additive 1-category A, the ∞-category
Kb(A) can be defined, see [Lur17, § 1.3.1], using the technology of dg nerves as follows.

Definition 3.4.1 ([Lur17, Cons. 1.3.1.6 and Rem. 1.3.2.2]). For an ordinary additive 1-category A,
we let Kb(A) := Ndg(Ch

b(A)) denote the dg nerve of the dg category of bounded chain complexes in
A.

Viewing A as an additive ∞-category, there is a canonical additive functor A → Kb(A) induced
from the functor that interprets objects of A as chain complexes concentrated in degree zero.

Proposition 3.4.2. For an ordinary additive 1-category A, the dg nerve Kb(A) = Ndg(Ch
b(A)) is a

stable ∞-category.

Proof. The dg nerve of the dg category of (unbounded) chain complexes is an ∞-category by [Lur17,
Prop. 1.3.1.10] and stable by [Lur17, Prop. 1.3.2.10]. The full dg subcategory of bounded chain com-
plexes is closed under shifts and formation of mapping cones, and thus its dg nerve Kb(A) is itself a
stable∞-category, by [Lur17, Lem. 1.1.3.3] and the discussion after [Lur17, Proof of Prop. 1.3.2.10]. □
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Remark 3.4.3. By [Lur17, Rem. 1.3.1.11], the homotopy 1-category h1K
b(A), recalled in Appen-

dix A.2.1, is the chain homotopy category Kb(A) in the sense of Definition 2.2.2. Note that, unlike
the notion of derived category, which can only be defined for abelian categories, the stable ∞-category
Kb(A) is defined for any (possibly non-abelian) additive category A.

In Corollary 3.4.10, we will prove that Kb(A) is the universal stable ∞-category associated to A.
To do so, we express Kb in terms of the functors constructed in the previous sections.

3.4.2. The free stable category on an additive category. Recall that PrL,cp → PrL,c is a symmetric
monoidal subcategory, and hence that Sp≥0 ∈ CAlg(PrL,cp) may also be considered an algebra in

CAlg(PrL,c). Notice also that the full subcategory inclusion Sp≥0 → Sp is symmetric monoidal, has
a right adjoint (namely the 0-th connective cover functor τ≥0) and sends compact objects in Sp≥0 to
compact objects in Sp, as the sphere spectrum compactly generates Sp≥0 and Sp.

Construction 3.4.4. Applying Proposition 3.1.8.(2) and (4) to the full subcategory inclusion Sp≥0 →
Sp in CAlg(PrL,c) and to the subcategory inclusion PrL,cp → PrL,c in CAlg(PrL) (see Proposi-

tion 3.2.10), we construct the following composite morphism in CAlg(PrL):

PrL,cpadd ≃ ModSp≥0
(PrL,cp)

ModSp≥0(PrL,cp→PrL,c)
−−−−−−−−−−−−−−−−→ ModSp≥0

(PrL,c)
−⊗Sp≥0

Sp

−−−−−−−→ ModSp(Pr
L,c) ≃ PrL,cst

As Sp≥0 is an idempotent algebra in PrL, the second functor − ⊗Sp≥0
Sp here is equivalent to the

composite

(3.5) ModSp≥0
(PrL,c)

forget−−−→ PrL,c
−⊗Sp−−−−→ ModSp(Pr

L,c).

Recall now the symmetric monoidal left adjoint functor from Construction 3.4.4 and the equivalences
PΣ and (−)c from Proposition 3.3.4. Then the following holds.

Proposition 3.4.5. The composite

(3.6) (−)fin : add PΣ

−−→ PrL,cpadd
Const. 3.4.4−−−−−−−−→ PrL,cst

(−)c−−−→ st

defines a morphism in CAlg(PrL) which is the left adjoint to the forgetful functor st→ add.
For C ∈ add, the unit C → Cfin of the adjunction is a fully faithful additive functor.

Proof. We show that the composite (−)fin is indeed left adjoint to the forgetful functor. By construction,

we have a commutative diagram in CAlg(PrL)

PrL,cpadd PrL,cst

PrL,cp PrL,c

−⊗Sp≥0
Sp

−⊗Sp≥0 −⊗Sp ,

where the top horizontal morphism is the functor from Construction 3.4.4, and the bottom horizontal
functor is the subcategory inclusion (which is a symmetric monoidal left adjoint by Proposition 3.2.10).
Taking right adjoints, the middle square of functors in the following diagram commutes:

add PrL,cpadd PrL,cst st

Cat⊔,idem
∞ PrL,cp PrL,c Catrex,idem∞

≃ ≃

≃ ≃

,
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The left and right square commute by Proposition 3.3.4. By Proposition 3.2.8.(3), the bottom horizontal

composite is the forgetful functor Catrex,idem∞ → Cat⊔,idem
∞ . The top horizontal functor is the right

adjoint to (−)fin and hence agrees with the forgetful functor st→ add.
We next prove fully faithfulness of the unit: Since both are left adjoints of the forgetful functor,

the functor (3.6) is equivalent to the functor (−)fin : add → st constructed in [ES22b, Def. 2.1.17]
which sends an additive, idempotent-complete ∞-category C to the smallest full stable subcategory
of Fun×(Cop,Sp) (the category of functors taking finite coproducts in C to finite products in Sp)
containing the image of the Yoneda embedding. In [ES22b, Cor. 2.1.5], it is shown that the inclusion
C → Fun×(Cop,Sp) is fully faithful, and hence so is the inclusion C → Cfin. □

Remark 3.4.6. As used in the proof of Proposition 3.4.5, the functor (3.6) is equivalent to the
functor (−)fin : add→ st constructed in [ES22b, Def. 2.1.17] taking an additive, idempotent-complete
∞-category C to the stable, idempotent-complete ∞-category Cfin of finite cell C-modules, explicitly
defined to be the smallest full stable subcategory of Fun×(Cop,Sp) (the category of functors taking
finite coproducts in C to finite products in Sp) containing the image of the Yoneda embedding. The
inclusion C ↪→ Cfin is induced by the Yoneda embedding.

3.4.3. Kb as a left adjoint. We now show that for an ordinary additive idempotent-complete 1-category
A, the universal stable ∞-category Afin from Proposition 3.4.5 is equivalent to Kb(A).

Consider the symmetric monoidal left adjoint (−)fin : add→ st of the forgetful functor from Propo-
sition 3.4.5. Categories in the image of (−)fin carry so-called weight structures, which were originally
introduced independently by Bondarko in [Bon10] and (under the name of co-t-structures) by Pauk-
sztello in [Pau08], and afterwards adopted to the∞-categorical setting by Elmanto and Sosnilo [ES22b],
whose exposition we closely follow.

Remark 3.4.7. For a representation theoretic point of view on (classical) weight structures in the
context of Soergel bimodules we refer to [ES22a]. Soergel bimodules appear in there as Springer
motives attached to Bott–Samelson resolutions of Schubert varieties in the full flag variety and form
an additive idempotent complete coheart, see [ES22a, Ex. 2.2] and compare with Example 3.4.8.

By [ES22b, Def. 2.2.1] a weight structure on an idempotent complete stable ∞-category D is a pair
(D≤0,D≥0) of two full idempotent complete subcategories fulfilling the following conditions:

(1) ΣD≥0 ⊂ D≥0,Σ
−1D≤0 ⊂ D≤0. We write D≥n = ΣnD≥0, D≤n = ΣnD≤0.

(2) For x ∈ D≤0 and y ∈ D≥1, we have π0(HomD(x, y)) ≃ 0.
(3) For any object x, there is a fiber sequence x≤0 → x→ x≥1 with x≤0 ∈ D≤0, x≥1 ∈ D≥1.

Note that condition (3) merely requires the existence of such a fiber sequence, neither is it unique nor
functorially associated to x. A weight structure is called bounded if D =

⋃
n(D≥−n ∩ D≤n). For any

weight structure, the weight heart D♡ := D≥0 ∩ D≤0 is additive and idempotent complete.
Just like t-structures, weight structures only depend on and may be constructed in terms of the

underlying (triangulated) homotopy category of D.

Example 3.4.8. Given an ordinary additive, idempotent complete 1-category A, the ∞-category
Kb(A) has a canonical bounded weight structure with Kb(A)≥0 the (dg nerve on the) full subcategory
of chain complexes supported in non-negative homological degrees. The weight heart Kb(A)♡ ≃ A
recovers the original additive 1-category and its inclusion is the canonical functor A → Kb(A).

A functor F : C → D between stable, idempotent-complete ∞-categories with weight structure is
weight exact if it is exact and the restriction of F to the full subcategory C≥0 ⊆ C factors through the
full subcategory D≥0 ⊆ D and the restriction of F to C≤0 ⊆ C factors through D≤0 ⊆ D. Weight exact
functors F : C → D restrict to additive functors F♡ : C♡ → D♡ between the weight hearts.
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Notation 3.4.9. Let stbw denote the ∞-category of idempotent complete stable categories equipped
with bounded weight structures and weight exact functors.

A key result of [ES22b] is that (−)fin : add → st factors as an equivalence add → stbw followed by
the functor stbw → st which forgets the weight structure, see [ES22b, Const. 2.2.7]. An inverse of this
equivalence add→ stbw is given by the functor (−)♡ : stbw → add taking the weight heart, see [ES22b,
Theorem 2.2.9]. The following corollary is a consequence of this theorem:

Corollary 3.4.10. Let A be an ordinary additive, idempotent-complete 1-category. We have an equiv-
alence of ∞-categories Afin ≃ Kb(A). In particular, for any stable, idempotent-complete ∞-category
B, the inclusion of degree-zero chain complexes A → Kb(A) induces an equivalence

Funex(Kb(A),B)→ Fun⊔(A,B).
Proof. By [ES22b, Thm. 2.2.9], for any additive, idempotent complete ∞-category A, the ∞-category
Afin is uniquely characterized by being a stable, idempotent-complete∞-category with bounded weight
structure with weight heart A. Since for an ordinary, additive, idempotent-complete 1-category A, the
∞-categoryKb(A) is a stable, idempotent-complete∞-category with weight structure and weight heart
A, see Proposition 3.4.2, Example 3.4.8. The result follows. □

Extending Corollary 3.4.10, we think of (−)fin : add→ st as the correct generalization of Kb(A) from
ordinary additive, idempotent-complete 1-categories to additive, idempotent-complete∞-categories A.
Notation 3.4.11. Abusing notation, we will henceforth write Kb(−) := (−)fin : add → st for the left
adjoint to the forgetful functor st→ add, even when applied to additive ∞-categories.

3.5. ∞-categories of graded modules. The categories appearing in this paper will not just be
additive or stable, but will typically be enriched in chain complexes of k-modules for a commutative
ring k, equipped with an additional Z-grading. In this section, we recall the necessary technical
machinery to address this coherently. This machinery will apply more generally to E∞-ring spectra,
i.e. commutative algebra objects in Sp. In §3.6, we relate these structures with possibly more familiar
variants of derived categories. Similar definitions are discussed in [Lur18].

3.5.1. K-modules.

Notation 3.5.1. For k an ordinary commutative ring, we let modk denote the ordinary symmetric
monoidal 1-category of k-modules.

We now discuss the∞-categorical analog of modk. It follows from Lemma 3.2.12.(8) that for an E∞-
ring spectrum K ∈ CAlg(Sp), the ∞-category ModK(Sp) is a compactly generated stable, presentably

symmetric monoidal category, i.e. ModK(Sp) ∈ CAlg(PrL,cst ).

Notation 3.5.2. For K ∈ CAlg(Sp), we write ModK for the category of K-modules ModK(Sp) ∈
CAlg(PrL,cst ) and PerfK for the category of perfect K-modules PerfK := ModK(Sp)

c ∈ CAlg(st).

The symmetric monoidal equivalence Ind: st→ PrL,cst transports PerfK to ModK and vice versa.

Example 3.5.3. The main application of this paper will only be concerned with the case that K = Hk
is an Eilenberg-MacLane spectrum of a classical commutative ring k. In this case, ModK is equivalent
to the unbounded derived ∞-category D(modk) of the abelian category modk of k-modules [Lur17,
Thm 7.1.2.13] with symmetric monoidal structure given by the derived tensor product − ⊗L

k −. The
∞-category PerfK is equivalent to its full subcategory on the perfect chain complexes, i.e. the chain
complexes quasi-isomorphic to a bounded complex of finitely generated projective k-modules.

Since Example 3.5.3 is the situation relevant to our paper, the reader can safely view K as a classical
ring k and ModK as D(modk). The situation of Example 3.5.3 will be discussed in more detail in §3.6.



40 YU LEON LIU, AARON MAZEL-GEE, DAVID REUTTER, CATHARINA STROPPEL, AND PAUL WEDRICH

3.5.2. Compact-projective K-modules. As above, we will be concerned with the additive variants of
the notions in §3.5.1. Let K be a connective E∞-ring spectrum, i.e. a commutative algebra K ∈
CAlg(Sp≥0). Since Sp≥0 ∈ CAlg(PrL,cpadd ), it follows from Lemma 3.2.12 that the category ModK(Sp≥0) ∈
CAlg(PrL,cpadd ).

Notation 3.5.4. Fix K ∈ CAlg(Sp≥0), we write Mod≥0
K for the ∞-category of connective K-modules

ModK(Sp≥0) ∈ CAlg(PrL,cpadd ) and CProjK for the category of compact-projective K-modules CProjK :=
ModK(Sp≥0)

cp ∈ CAlg(add).

Note that Mod≥0
K is a full subcategory of ModK.

Example 3.5.5. For K = Hk an Eilenberg-MacLane spectrum of a classical commutative ring k, the
∞-category Mod≥0

Hk is equivalent to the full subcategory D(modk)≥0 of the unbounded derived ∞-
category D(modk) of the ring k on those chain complexes with homology in non-negative homological
degree. It follows from Lemma 3.5.7 below that the full subcategory CProjHk is equivalent to the
1-category of finitely generated projective k-modules in the usual sense (with fully faithful inclusion
into D(modk)≥0 as complexes concentrated in degree zero), see also §3.6.

Observation 3.5.6. The symmetric monoidal equivalence Ind: st→ PrL,cst transports PerfK to ModK.

Similarly, the symmetric monoidal equivalence PΣ : add→ PrL,cpadd transports CProjK to Mod≥0
K .

Lemma 3.5.7. The following hold:

(1) Let K ∈ CAlg(Sp≥0). The rank one free module KK generates CProjK under retracts and finite
direct sums; in particular, every object of CProjK is a retract of a finite coproduct of modules
isomorphic to KK.

(2) Let K ∈ CAlg(Sp). The rank one free module KK generates PerfK under retracts and finite
colimits; in particular, every object of PerfK is a retract of an iterated finite colimit of modules
isomorphic to KK.

Proof. Immediate from Lemma 3.2.9 and the fact that ModK and Mod≥0
K are compact and compact

projectively generated by KK respectively. □

If k is an ordinary ring, then an object of PerfHk can be represented by a bounded chain complex
of finitely generated projective k-modules. This generalizes to any K ∈ CAlg(Sp≥0):

Proposition 3.5.8. For K ∈ CAlg(Sp≥0) there is a symmetric monoidal equivalence

Kb(CProjK) ≃ PerfK.

Proof. Starting with the definition of Kb = (−)fin in Proposition 3.4.5, we obtain the equivalence

Kb(CProjK) :=
(
PΣ(CProjK)⊗Sp≥0

Sp
)c

≃
(
ModK(Sp≥0)⊗Sp≥0

Sp
)c

≃ (ModK(Sp))
c
=: PerfK

where the last step follows from Proposition 3.1.8.(5). □

3.5.3. Z-graded K-modules. Given an ordinary monoid Z and a commutative ring k, the category
Fun(Z,modk) of Z-graded k-modules admits a convolution monoidal structure, for which the tensor
product of Z-graded modules (Mz)z∈Z and (Nz)z∈Z is given by the Z-graded module which in degree
z ∈ Z is ⊕z1z2=zMz1 ⊗ Nz2 . This construction is a special case of the Day convolution monoidal
structure on a functor category [Lur17, § 2.2.6]. Here, we focus on the symmetric monoidal case.

We briefly recall this construction of a symmetric monoidal structure on Fun(J, C) in the case where
J is a small symmetric monoidal ∞-category and C is a presentably symmetric monoidal ∞-category.
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Lemma 3.5.9. For J ∈ Cat∞ and C ∈ PrL, the functor C × J → Fun(Jop, C),
(3.7) (c, j) 7→ c⊗HomJ(−, j) ∈ Fun(Jop, C)
(where ⊗ denotes the action of S on C inherited from the presentability of C) induces an equivalence

(3.8) C ⊗ P(J) ≃ Fun(Jop, C)
in PrL (where ⊗ denotes the tensor product of PrL).

Proof. Consider the chain of equivalences

C ⊗ P(J) ≃ FunL(P(J), Cop)op ≃ Fun(J, Cop)op ≃ Fun(Jop, C)
Here, the first equivalence follows from (3.2), the second equivalence is the universal property of the
Yoneda embedding [Lur09, Thm. 5.1.5.6], and the last records the interplay between functor categories
and opposites. Precomposing this equivalence with the inclusion functor C × J → C ⊗ P(J) (which is
cocontinuous in its second argument) unpacks to the functor (3.7). □

Assume J ∈ CAlg(Cat∞) and C ∈ CAlg(PrL). Since P : Cat∞ → PrL is symmetric monoidal by
Proposition 3.1.6, it follows that for J ∈ CAlg(Cat∞), the∞-category P(J) inherits a presentably sym-

metric monoidal structure, i.e. P(J) ∈ CAlg(PrL). Then (3.8) provides the following Day convolution
monoidal structure on Fun(Jop, C).
Corollary 3.5.10. Let J ∈ CAlg(Cat∞) and C ∈ CAlg(PrL). Then Fun(Jop, C) inherits a presentably

symmetric monoidal structure from the tensor product C ⊗ P(J) of commutative algebras in PrL.

Remark 3.5.11. By [BS24, Prop. 3.10], this construction agrees with the Day convolution structure
on functor categories, as e.g. defined in [Lur17, Rem. 2.2.6.8], also see [BS24, Thm. 3.1]. Explicitly,
the tensor product of functors F : Jop → C and G : Jop → C is given by the left Kan extension of the

functor Jop × Jop F⊗G−−−→ C along the tensor product Jop × Jop → Jop.

Lemma 3.5.12. If J ∈ CAlg(Cat∞) and C is in CAlg(PrL,c) or CAlg(PrL,cp), then Fun(Jop, C) with
its Day convolution monoidal structure is also in CAlg(PrL,c) or CAlg(PrL,cp), respectively.

Proof. The Day convolution monoidal structure was defined by identifying Fun(Jop, C) with C ⊗P(J).
The presheaf category P(J) is an object of CAlg(PrL,cp) (in fact, it is generated by a small set of

objects which commute with all small colimits). Hence, if C is in CAlg(PrL,c) or in the subcategory

CAlg(PrL,cp), then so is C ⊗ P(J). □

Observation 3.5.13. The monoidal unit I ∈ J of any symmetric monoidal∞-category J ∈ CAlg(Cat∞)
induces a symmetric monoidal functor S → P(J) left adjoint to the evaluation functor evI : P(J)→ S,
and explicitly given by sending a space X to the functor HomJ(−, I) ×X : Jop → S. It follows that
for any presentably symmetric monoidal category C, there is a symmetric monoidal left adjoint

C ≃ C ⊗ S → C ⊗ P(J) ≃ Fun(Jop, C)
to the evaluation functor evI : Fun(J

op, C) → C, explicitly given by sending c ∈ C to the functor
HomJ(−, I)⊗ c : Jop → C.

We will particularly focus on gradings by a homotopy coherent abelian monoid, i.e. a Z ∈ CAlg(S).
Definition 3.5.14. Let Z ∈ CAlg(S) and recall Day convolution from Corollary 3.5.10.

(1) For K ∈ CAlg(Sp≥0), we define the∞-category of Z-graded connective K-modules Mod≥0,Z
K ∈

CAlg(PrL,cp) as the functor category Fun(Z,Mod≥0
K ) with the Day convolution structure.

(2) For K ∈ CAlg(Sp), we define the ∞-category of Z-graded K-modules ModZK ∈ CAlg(PrL,c) to
be the functor category Fun(Z,ModK) with the Day convolution structure.
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Example 3.5.15. Following Example 3.5.3, if Z is a discrete (i.e. ordinary) commutative monoid Z
and K = Hk the Eilenberg-MacLane spectrum of an ordinary commutative ring k, the ∞-category
ModZK is the unbounded derived ∞-category D(modZk ) of the ordinary abelian 1-category modZk :=
Fun(Z,modk) of Z-graded k-modules. This will be discussed in more detail in Section 3.6.

Unpacking Day convolution from Corollary 3.5.10 in these terms, the tensor product of an ordinary
k-module M concentrated in degree z ∈ Z and an ordinary k-module N concentrated in degree w ∈ Z
is given by the derived tensor product M ⊗L

k N concentrated in degree z + w ∈ Z.

Example 3.5.16. Still in the setup of Example 3.5.15, the∞-categories
(
Mod≥0,Z

Hk

)cp

and
(
ModZHk

)c

may be identified with the full subcategories Funfin.supp.(Z,CProjk) and Funfin.supp.(Z,Perfk) of the
functor ∞-categories Fun(Z,CProjk) and Fun(Z,Perfk), respectively, on the finitely supported func-
tors, i.e. functors that vanish on all but finitely many elements of Z.

Observation 3.5.17. Assume Z ∈ CAlg(S) and K ∈ CAlg(Sp≥0). The symmetric monoidal functor

− ⊗ Sp: PrL,cpadd → PrL,cst from Construction 3.4.4 takes Mod≥0,Z
K with its Day convolution monoidal

structure to ModZK with its Day convolution monoidal structure. Indeed, we have the following sequence

Mod≥0,Z
K ⊗ Sp ≃ P(Z)⊗Mod≥0

K ⊗ Sp ≃ P(Z)⊗ModK ≃ ModZK

of symmetric monoidal equivalences. In particular, it follows that the fully faithful inclusion Mod≥0,Z
K ↪→

ModZK is symmetric monoidal and hence a morphism in CAlg(PrL).

3.6. Derived ∞-categories of graded modules. Many of the constructions of Section 2 center
around discrete (i.e. ordinary) graded k-algebras, and derived graded bimodules between them. In this
section, we therefore focus on the case where K is a discrete commutative ring k and Z is a discrete
commutative monoid Z and unpack our constructions in terms of homological algebra, generalizing
Examples 3.5.3, 3.5.5 and 3.5.15.

3.6.1. Derived ∞-categories. We quickly review the basics of the theory of derived ∞-categories; we
refer the reader to [Lur17, § 1.3] for more details.

Given an abelian 1-category A, its (unbounded) derived ∞-category D(A) is the ∞-categorical
localization of the∞-category of unbounded chain complexes in A (constructed as the dg nerve [Lur17,
§ 1.3.1] of the corresponding differential graded category) at the quasi-isomorphisms. In particular, the
homotopy 1-category h1D(A) agrees with the ordinary derived 1-category of A in the usual sense.

Let D(A)≥0 denote the full subcategory of D(A) on the chain complexes with vanishing homology
in negative degrees. When A is particularly well-behaved, the ∞-categories D(A)≥0 and D(A) can be
expressed in terms of completions (of the type introduced throughout Section 3), as we discuss now.

Recall the following classical analogues of Definition 3.2.1:

Definition 3.6.1. Let c be an object in an ordinary 1-category C with small colimits. Then, c is called

(1) compact, if HomC(c,−) : C → Set preserves filtered colimits;
(2) 1-projective, if HomC(c,−) : C → Set preserves geometric realizations (equivalently, reflective

coequalizers);
(3) compact 1-projective if HomC(c,−) : C → Set preserves sifted colimits, or equivalently if c is

compact and 1-projective.

We say that C is compactly generated (resp. 1-projectively generated) if there is a small set of
compact (resp. compact 1-projective) objects which generate C under small colimits. We denote the
full subcategory of compact, resp. compact 1-projective, objects in C by Cc, resp. Cc1p.
Example 3.6.2. If A is an abelian 1-category, an object c ∈ A is 1-projective if and only if it is
projective in the usual sense.
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Example 3.6.3. A presentable abelian category A is 1-projectively generated if it is compactly gen-
erated and if the full subcategory of compact objects Ac has enough projective objects, i.e. if for every
compact object a ∈ A there exists a compact 1-projective object p and an epimorphism p ↠ a. In
particular, this implies that also A has enough projective objects, i.e. that for every object a ∈ A
there exists a 1-projective p and an epimorphism p↠ a.

For example, the abelian category modk is a 1-projectively generated presentable 1-category with
modck the full subcategory of finitely generated modules and modc1pk the full subcategory of finitely
generated projective k-modules.

Remark 3.6.4. Because Set → S preserves filtered colimits, an object in an ordinary 1-category C
is compact in the sense of Definition 3.6.1 if and only if it is compact in the sense of § 3.2 when C is
considered as an ∞-category.

Warning 3.6.5. Remark 3.6.4 not true projectivity: The condition for an object c ∈ C to be 1-
projective (i.e. HomC(c,−) : C → Set preserving geometric realizations) is different to the condition for
it to be projective (i.e. HomC(c,−) : C → Set → S preserving geometric realizations), simply because
the inclusion Set ↪→ S does not preserve geometric realizations. This difference is at the heart of the
process of animation [CS24, § 5.1.4], which takes an ordinary cocomplete category C to PΣ(Cc1p), i.e.
freely making the compact 1-projective objects into compact-projective objects.

The following statements are well-known and can be gathered from various parts of [Lur17, § 1.3]:

Proposition 3.6.6. Let A be a 1-projectively generated presentable abelian 1-category.

(1) The additive presentable ∞-category D(A)≥0 is equivalent to PΣ(Ac1p).
(2) The stable presentable ∞-category D(A) is equivalent to its stabilization

PΣ(Ac1p)⊗ Sp ≃ IndKb(Ac1p).

Proof. For the first statement, note that A has enough projective objects (see Example 3.6.3) and
let D−(A) be the dg-nerve of the differential graded category of bounded-below chain complexes of
1-projective objects (i.e. projective objects in the standard abelian sense). Let D−(A)≥0 be the full
subcategory on the chain complexes with vanishing homology in negative degrees. Entirely analogous14

to the proof of [Lur17, Prop. 1.3.3.14], the Dold-Kan correspondence shows that D−(A)≥0 ≃ PΣ(Ac1p).
Since any 1-projectively generated presentable abelian 1-category is Grothendieck abelian [Lur17,
Def. 1.3.5.1], it follows from [Lur17, Prop. 1.3.5.24, Def. 1.3.5.8, Prop. 1.3.5.13] that there is a fully
faithful embedding D−(A) → D(A) with image the chain complexes with bounded-below homology.
In particular, this embedding identifies D−(A)≥0 with D(A)≥0.

For the second statement, since the t-structure (D(A)≤0,D(A)≥0) on D(A) is right-complete [Lur17,
Prop. 1.3.5.21], it follows that D(A) is the stabilization of D(A)≥0; since D(A)≥0 = PΣ(Ac1p) is
presentable this stabilization is given by tensoring with Sp by [Lur17, Ex. 4.8.1.23]. The equivalence
PΣ(Ac1p) ⊗ Sp ≃ IndKb(Ac1p) follows then from the definition of (−)fin in Proposition 3.4.5 and its
equivalence with Kb from Corollary 3.4.10. □

3.6.2. Derived ∞-categories of graded modules. We return to the main goal of this subsection to give a
homological perspective on the constructions of the last sections. Let K be a discrete commutative ring
k and Z a discrete commutative monoid Z. Recall the notation modZk for the ordinary category of Z-
graded k-modules. Throughout this subsection, we also fix an ordinary (not necessarily commutative)

Z-graded k-algebra A ∈ Alg(modZk ).

Notation 3.6.7. We let grmodA := RModA(modZk ) denote the ordinary 1-category of Z-graded right
A-modules.

14[Lur17, Prop. 1.3.3.14] does not apply directly since the full subcategory Ac of compact objects in a presentable
abelian category A is not necessarily itself abelian.
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This category grmodA is a 1-projectively generated, in the sense of Definition 3.6.1, presentable
abelian 1-category. A standard computation shows that its compact 1-projective objects (i.e. its
compact projective objects in the usual abelian sense) are precisely given by the graded-compact
projective modules, defined as follows.

Definition 3.6.8. An (ordinary) Z-graded A-module M ∈ grmodA is graded-compact-projective if it

is a retract of a finite direct sums of grading shifts of the free module A. Let grmodgr−cp
A ⊂ grmodA

denote the full subcategory on the graded-compact-projective A-modules.

In the notation of Definition 3.6.1, grmodgr−cp
A = (grmodA)

c1p
.

Using Proposition 3.6.6, we can identify the ∞-category RModHA(Mod≥0,Z
Hk ) as well as its various

subcategories in terms of homological algebra:

Proposition 3.6.9. Let Z be a discrete monoid, k a discrete commutative ring, and A a discrete
Z-graded (not necessarily commutative) k-algebra.

(1) The ∞-category
(
RModHA(Mod≥0,Z

Hk )
)cp

is equivalent to grmodgr−cp
A . In particular, it is a

1-category.

(2) The ∞-category
(
RModHA(ModZHk)

)c

is equivalent to the ∞-category Kb(grmodgr−cp
A ).

(3) The ∞-category RModHA(Mod≥0,Z
Hk ) is equivalent to the ∞-category D(grmodA)≥0.

(4) The∞-category RModHA(ModZHk) is equivalent to the (unbounded) derived∞-category D(grmodA).

Proof. The ∞-category Mod≥0,Z
Hk = Fun(Z,Mod≥0

Hk) is generated by the set of compact 1-projective
objects Hk[z] for z ∈ Z, i.e. the ground ring k in homological degree zero, and grading-degree z ∈
Z. Hence, by Lemma 3.2.12.(7), RModHA(Mod≥0,Z

Hk ) is generated by shifted-free modules HA[z] =

HA⊗Hk Hk[z] for z ∈ Z. By Lemma 3.2.9.(1), the compact-projective objects of RModHA(Mod≥0,Z
Hk )

are retracts of finite direct sums of such modules, and hence are precisely the graded-compact-projective
modules. This proves (1).

For (3), note that RModHA(Mod≥0,Z
Hk ) is projectively generated (see Lemma 3.2.12), and hence

equivalent to

PΣ
(
RModHA(Mod≥0,Z

Hk )cp
)
= PΣ(grmodgr−cp

A ).

Since grmodgr−cp
A is the full subcategory on the compact 1-projectives in the 1-projectively generated

presentable abelian category grmodA, it follows from Proposition 3.6.6.(1) that this is equivalent to
D(grmodA)≥0.

Statement (4) follows from Proposition 3.6.6.(2) since by [Lur17, Thm. 4.8.4.6], RModHA(Mod≥0,Z
Hk )⊗

Sp ≃ RModHA(Mod≥0,Z
Hk ⊗ Sp) ≃ RModHA(ModZHk).

Statement (2) then follows since D(grmodA) ≃ Ind(Kb(grmodgr−cp
A )) by Proposition 3.6.6.(2). □

Motivated by Proposition 3.6.9, we call the objects in the full subcategoryD(grmodA)
c ⊆ D(grmodA)

graded-perfect.

Remark 3.6.10. Since D(grmodA)
c ≃ Kb(grmodgr−cp

A ) an object is graded-perfect if it is quasi-
isomorphic to a bounded (in either direction) chain complex of graded-compact-projective A-modules.

Notation 3.6.11. We write D(grmodA)
gr−perf := D(grmodA)

c for the full subcategory of D(grmodA)
on the graded-perfect modules.
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4. Graded-linear ∞-categories and Morita theory

The goal of this section is twofold: in the first half of this section we introduce the relevant notions
of graded and linear ∞-categories, and prove an ∞-categorical version of the familiar equivalence
between categories enriched in graded modules and categories with an action. We have seen a concrete
1-categorical instance already in form of the categories BSbim

gr

n and BSbimn in Section 2. In the second
half of this section, we introduce the Morita categories relevant for the construction of our monoidal
(2, 2)-category Sbim.

4.1. Presentably enriched ∞-categories.

4.1.1. Closed monoidal ∞-categories and closed module ∞-categories.

Definition 4.1.1 ([Lur17, Def. 4.2.1.28]). Let V be a (possibly large) monoidal ∞-category, and C a
left V-module ∞-category. A morphism object between objects x, y ∈ C is an object HomC(x, y) ∈ V
representing the presheaf HomC(−⊗x, y) : Vop → S, i.e. equipped with isomorphisms natural in v ∈ V

HomV(v,HomC(x, y)) ≃ HomC(v ⊗ x, y).
A V-module category C is closed if a morphism object exists between every pair of objects x, y ∈ C. A
closed monoidal ∞-category is a monoidal ∞-category whose left action on itself is closed.

Observation 4.1.2. Let F : V → W be a monoidal functor from a monoidal ∞-category to a closed
monoidal ∞-category W which is left adjoint to a functor G. Then, the induced V-action on W is
closed with morphism object GHomW(w,w′) ∈ V for w,w′ ∈ W. If V is also closed monoidal, then
for v, v′ ∈ V, the map of spaces HomV(v, v

′)→ HomW(Fv, Fv′) lifts15 along HomV(I,−) : V→ S to a
V-morphism

HomV(v, v
′)→ GHomW(Fv, Fv′).

Example 4.1.3. Let V ∈ Alg(PrL) and C ∈ LModV(Pr
L), i.e. C is a presentable ∞-category with

an action − ⊗ − : V × C → C by a presentable monoidal ∞-category V which is cocontinuous in both
variables. It follows from the adjoint functor theorem, Proposition 3.1.4, that HomC(−⊗x, y) : Vop → S
is representable for all x, y ∈ C, i.e. that the V-module category C is closed. In particular, any
presentably monoidal ∞-category is closed monoidal.

Example 4.1.4. Let K be a set of simplicial sets and recall from CatK∞ the presentably symmetric
monoidal ∞-category of ∞-categories with K-colimits and K-colimit preserving functors. For C,D ∈
CatK∞, the full subcategory FunK(C,D) of Fun(C,D) on the K-colimit preserving functors is closed

under K-colimits [Lur17, Rem. 4.8.4.14] and hence is an object of CatK∞. It follows directly from the

characterization of the tensor product in CatK∞, see Proposition 3.1.11, that FunK(C,D) ∈ CatK∞ is the

morphism object between C and D in CatK∞ (cf. proof of [Lur17, Lem. 4.8.4.2]).

We generalize Example 4.1.4 to module categories using the following terminology.

Notation 4.1.5. Let K be a small set of simplicial sets, V ∈ Alg(CatK∞) and C,D ∈ LModV(Cat
K
∞). Let

FunV(C,D) be the∞-category of V-module functors [Lur17, Def. 4.6.2.7] and FunKV (C,D) ⊂ FunV(C,D)
the full subcategory on those module functors whose underlying functors preserve K-colimits.

By [Lur17, Rem. 4.8.4.14], FunKV (C,D) is closed under K-colimits, thus an object of CatK∞.

Lemma 4.1.6. Let K be a small set of simplicial sets and let V ∈ Alg(CatK∞). Cconsider the right

action of CatK∞ on LModV(Cat
K
∞). Let C,D ∈ LModV(Cat

K
∞). Then, the following hold.

15Explicitly, under the equivalence HomV(HomV(v, v
′), GHomW(Fv, Fv′)) ≃ HomW(FHomV(v, v

′),HomW(Fv, Fv′)) ≃
HomW(FHomV(v, v

′)⊗ Fv, Fv′) ≃ HomW(F (HomV(v, v
′)⊗ v), Fv′), the morphism becomes the F - image of the counit

HomV(v, v
′)⊗ v → v′.
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(1) FunKV (C,D) is a morphism object in CatK∞ between C,D ∈ LModV(Cat
K
∞).

(2) If V is furthermore symmetric monoidal, then FunKV (C,D) admits a V-action which makes it

into a morphism object in ModV(Cat
K
∞).

Proof. We first prove statement (1) for K = ∅. Consider the locally coCartesian fibration C⊛ → V⊛

from [Lur17, Not. 4.2.2.17, Lem. 4.2.2.20] associated to a V-module category C. It follows from
[Lur17, Lem. 4.8.4.12] that FunV(C,D) ⊂ Fun/V⊛(C⊛,D⊛) is the full subcategory on those functors
which preserve locally coCartesian morphisms, where for given functors F : A → B ← C : G of ∞-
categories, we let Fun/B(A, C) := Fun(A, C)×Fun(A,B) {F} denote the over-functor category. If C,D ∈
LModV(Cat∞) and A ∈ Cat∞, the evident equivalence

Fun(A,Fun/V⊛(C⊛,D⊛)) ≃ Fun/V⊛(A× C⊛,D⊛) ≃ Fun/V⊛((A× C)⊛,D⊛)

restricts to an equivalence

(4.1) Fun(A,FunV(C,D)) ≃ FunV(A× C,D)
which upon passing to maximal∞-subgroupoids shows that FunV(C,D) is the morphism object for the
action of Cat∞ on LModV(Cat∞).

Now let K be general. Let A ∈ CatK∞ and C,D ∈ LModV(Cat
K
∞), and let ⊗ denote the action of

CatK∞ on LModV(Cat
K
∞). By definition of the action, it induces an equivalence

(4.2) FunKV (A⊗ C,D) ≃ FunK×K
V (A× C,D),

where FunK×K
V (A × C,D) ⊂ FunV(A × C,D) denotes the full subcategory of V-linear functors whose

underlying functor A × C → D preserves K-index colimits separately in each variable. On the other
hand, by the description of K-indexed colimits in FunKV (C,D) [Lur17, Lem. 4.8.4.13], the equivalence
(4.1) restricts to an equivalence of full subcategories

(4.3) FunK(A,FunKV (C,D)) ≃ FunK,K
V (A× C,D).

Composing (4.2) and (4.3) exhibits FunKV (C,D) as the morphism object of C,D in CatK∞. This proves
part (1). Part (2) follows now with Observation 4.1.2 applied to the (symmetric) monoidal left adjoint

CatK∞ → ModV(Cat
K
∞). □

4.1.2. Presentably enriched ∞-categories. Let V ∈ Alg(PrL) and C ∈ LModV(Pr
L), i.e. C is a pre-

sentable ∞-category with an action − ⊗ − : V × C → C by a presentable monoidal ∞-category V
which is cocontinuous in both variables. As in Example 4.1.3, it follows from the adjoint functor the-
orem that the action is closed, i.e. for any pair of objects x, y ∈ C, there exists a morphism object
HomC(x, y) ∈ V. It is shown in [GH15, Cor. 7.4.13] that these morphism objects assemble C into a
V-enriched∞-category with space of objects C≃, and which we will also denote by C. By [Hei23, Thm.
7.21, Thm. 1.2], this construction is functorial and multiplicative in the following sense:

Proposition 4.1.7. Let V ∈ CAlg(PrL) and let Ĉat[V] denote the ∞-category of large V-enriched
∞-categories equipped with the enriched tensor product. The construction of an enriched ∞-category
from a presentable module category then assembles into a lax symmetric monoidal faithful functor

ModV(Pr
L)→ Ĉat[V].

In particular, this induces a functor

(4.4) CAlg(ModV(Pr
L)) ≃ CAlg(PrL)V/ → CAlg(Ĉat[V]).

The functor (4.4) will be our meain tool to construct symmetric monoidal enriched ∞-categories

and symmetric monoidal enriched functors between them. In particular, if V ∈ CAlg(PrL), then V
itself may be considered as self-enriched, i.e. V ∈ CAlg(Ĉat[V]).
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Notation 4.1.8. We follow [MS21, § A.3] and call a V-enriched∞-category C ∈ Ĉat[V] presentably V-
enriched if its underlying∞-category is presentable, admits tensors16, and if moreover for every v ∈ V,
the induced functor v ⊗− : C → C between the underlying ∞-categories preserves small colimits.

Remark 4.1.9. Let PrLV denote the (non-full) subcategory of Ĉat[V] on the presentably V-enriched∞-
categories C and on those V-enriched functors that are left adjoint in the V-enriched sense,17see [MS21,

Def. A.2.12]. Then, it is shown in [MS21, Thm. A.3.8] that the functor ModV(Pr
L) → Ĉat[V]

factors as an equivalence through PrLV . In particular, ModV(Pr
L) ≃ PrLV is a subcategory of Ĉat[V];

it is merely a property of large V-enriched categories and V-enriched functors to be in the image of

ModV(Pr
L)→ Ĉat[V].

4.2. Graded linear ∞-categories. To incorporate K-linearity for K ∈ CAlg(Sp) into the setup, we
could define small K-linear ∞-categories as small ∞-categories enriched in the presentably symmetric
monoidal ∞-category ModK from Notation 3.5.2. Due to Proposition 4.1.7 and Remark 4.1.9, it is
technically easier to work with presentably enriched ∞-categories instead, as these can be expressed
purely in the language of module categories. Our ‘presentable K-linear’ terminology is justified by
Remark 4.2.3.

4.2.1. K-linear ∞-categories. We start with some definitions which are crucial throughout the paper.

Definition 4.2.1. For K ∈ CAlg(Sp≥0), we define

(1) the ∞-category PrLaddK
of additive presentable K-linear ∞-categories as

PrLaddK
:= Mod

Mod
≥0
K
(PrL);

(2) the ∞-category addK of small additive, idempotent-complete K-linear ∞-categories as

addK := ModCProjK(add).

For K ∈ CAlg(Sp), we define

(3) the ∞-category PrLstK of stable presentable K-linear ∞-categories as

PrLstK := ModModK(Pr
L);

(4) the ∞-category stK of small stable, idempotent-complete K-linear ∞-categories to be

stK := ModPerfK(st).

Remark 4.2.2. In other words, an additive/stable presentableK-linear∞-category is an additive/stable

presentable∞-category C with an action by Mod≥0
K /ModK, so that the action functor Mod

(≥0)
K ×C → C

preserves small colimits in both variables. A small additive/stable idempotent-complete K-linear ∞-
category is a small, additive/stable idempotent complete ∞-category C with an action by CProjK or
PerfK, respectively so that the action functor CProjK ×C → C is additive in either variable, or so that
the action functor PerfK × C → C is exact in either variable, respectively.

Remark 4.2.3. Following Remark 4.1.9, an additive presentable K-linear ∞-category is precisely
a presentably Mod≥0

K -enriched ∞-category in the sense of Remark 4.1.9, i.e. a Mod≥0
K -enriched ∞-

category fulfilling certain presentability properties. Similarly, a stable presentable K-linear∞-category
is precisely a presentably ModK-enriched∞-category, i.e. a ModK-enriched∞-category fulfilling certain
presentability properties.

16A V-enriched∞-category C admits tensors if the V-enriched functor HomV(v,HomC(c,−)) : C → V is corepresentable
for all v ∈ V and c ∈ C. Denoting the corepresenting objects by v ⊗ c ∈ C, this induces an action of V on the underlying

∞-category of C.
17Equivalently, by [MS21, Lem. A.2.14], V-enriched functors whose underlying functor is left adjoint and preserves

the induced V-action.
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The following justifies the terminology ‘stable/additive presentable K-linear’ in Definition 4.2.1.

Observation 4.2.4. Since ModK is stable and Mod≥0
K is additive, we obtain the following equivalences

from Proposition 3.1.8.(3):

PrLaddK
:= Mod

Mod
≥0
K
(PrL) ≃ Mod

Mod
≥0
K
(PrLadd)

PrLstK := ModModK(Pr
L) ≃ ModModK(Pr

L
st)

In particular, any presentably ModK-enriched∞-category is automatically stable, and any presentably
Mod≥0

K -enriched∞-category is automatically additive. Combining Proposition 3.1.8.(3) with the equiv-
alences from §3.1 and Section 3.3, we obtain the analogous characterizations of their small variants:

addK := ModCProjK(add) ≃ Mod
Mod

≥0
K
(PrL,cpadd ) ≃ Mod

Mod
≥0
K
(PrL,cp) ≃ ModCProjK(Cat

⊔,idem
∞ )

stK := ModPerfK(st) ≃ ModModK(Pr
L,c
st ) ≃ ModModK(Pr

L,c) ≃ ModPerfK(Cat
rex,idem
∞ )

The next remark covers our main case of interest and connects to the framework from Section 2.

Remark 4.2.5. In case K = Hk for a field k of characteristic zero, it follows from [Coh16] that stk :=

stHk is the localization of the ordinary 1-category dgCatidem,pretriang
k of small idempotent-complete pre-

triangulated dg-categories at the quasi-equivalences, i.e. those dg-functors which induces triangulated
equivalences on homotopy categories. Hence, the reader may consider stk as our∞-categorical stand-in

for the theory of dg-categories. In practice, the localization functor dgCatidem,pretriang
k → stk provides

an easy way to construct objects and morphisms of stk.

Observation 4.2.6. As ∞-categories of modules of commutative algebras in presentably symmet-
ric monoidal ∞-categories, both addK and stK are presentably symmetric monoidal. The symmetric
monoidal structure on addK can be characterized as follows: for C,D ∈ addK, there is a functor
C × D → C ⊗ D which is additive and K-linear in either variable, and which for all E ∈ addK induces
an equivalence between the ∞-category of additive K-linear functors C ⊗ D → E and the ∞-category
of functors C ×D → E that are additive and K-linear in either variable. An analogous characterization
with additive replaced by exact holds for stK.

Proposition 4.2.7. Let K ∈ CAlg(Sp≥0). Recall the functor Kb : st→ add from Notation 3.4.11.

(1) This functor induces a symmetric monoidal functor Kb : stK → addK which is left adjoint to
the forgetful functor addK → stK.

(2) For C ∈ addK, the unit of the adjunction C → Kb(C) is fully faithful.

Proof. By Proposition 3.1.8.(4), the symmetric monoidal left adjointKb : add→ st induces a symmetric
monoidal left adjoint functor addK = ModCProjK(add) → ModKb(CProjK)

(st). Composing with the

equivalence Kb(CProjK) ≃ PerfK from Proposition 3.5.8 results in the desired functor proing the first
part. Fully faithfulness of the unit of the adjunction follows from Proposition 3.4.5. □

4.2.2. ∞-categories enriched in graded modules. Remark 4.1.9 motivates the following terminology:

Definition 4.2.8. Let Z be a homotopy coherent abelian monoid, i.e. Z ∈ CAlg(S).
For K ∈ CAlg(Sp≥0), we define

(1) the ∞-category PrL
Mod

≥0,Z
K

of presentably Mod≥0,Z
K -enriched ∞-categories,

PrL
Mod

≥0,Z
K

:= Mod
Mod

≥0,Z
K

(PrL) ;

(2) the∞-category PrL,cp
Mod

≥0,Z
K

of projectively generated presentablyMod≥0,Z
K -enriched∞-categories,

PrL,cp
Mod

≥0,Z
K

:= Mod
Mod

≥0,Z
K

(PrL,cp) .



A BRAIDED MONOIDAL (∞, 2)-CATEGORY OF SOERGEL BIMODULES 49

For K ∈ CAlg(Sp), we define

(3) the ∞-category PrLModZ
K
of presentably ModZK -enriched ∞-categories,

PrLModZ
K
:= ModModZ

K
(PrL) ;

(4) the ∞-category PrL,c
ModZ

K
of compactly generated presentably ModZK -enriched ∞-categories,

PrL,c
ModZ

K
:= ModModZ

K
(PrL,c) .

As∞-categories of modules of commutative algebras in presentably symmetric monoidal categories,

both, PrL,cp
Mod

≥0,Z
K

and PrL,c
ModZ

K
, are presentably symmetric monoidal ∞-categories.

Remark 4.2.9. As in Observation 4.2.4, any presentably Mod≥0,Z
K -enriched ∞-category is additive

and any presentably ModZK -enriched ∞-category is stable, and we have the following equivalences:

PrL
Mod

≥0,Z
K

:= Mod
Mod

≥0,Z
K

(PrL) ≃ Mod
Mod

≥0,Z
K

(PrLadd)

PrLModZ
K
:= ModModZ

K
(PrL) ≃ ModModZ

K
(PrLst)

Similarly, we have the following equivalences for their small variants, abbreviating M = Mod≥0,Z
K :

PrL,cp
Mod

≥0,Z
K

:= Mod
Mod

≥0,Z
K

(PrL,cp) ≃ ModM (PrL,cpadd ) ≃ ModMcp(add) ≃ ModMcp(Cat⊔,idem
∞ )

PrL,c
ModZ

K
:= ModModZ

K
(PrL,c) ≃ ModModZ

K
(PrL,cst ) ≃ Mod(ModZ

K )
c(st) ≃ Mod(ModZ

K )
c(Catrex,idem∞ )

Example 4.2.10. As discussed in Example 3.5.15, if Z is a discrete (i.e. ordinary) commuta-

tive monoid Z, then (ModZK )
cp and (ModZK )

c are the ∞-categories of finitely supported functors

Funfin.supp.(Z,CProjK) and Funfin.supp.(Z,PerfK), i.e. of functors that vanish on all but finitely many
elements of Z. In particular, in the case of grading by a discrete monoid Z, we obtain the following
equivalences:

PrL,cp
Mod

≥0,Z
K
≃ ModFunfin.supp.(Z,CProjK)

(add)

PrL,c
ModZ

K
≃ ModFunfin.supp.(Z,PerfK)(st)

4.3. From gradings to actions. Given a ring k, and a k-linear category C with an action by a
discrete monoid Z, then the category C is canonically enriched in the ordinary category modZk of Z-
graded k-modules. Indeed, given objects c, d ∈ C we define the k-module of degree-z morphisms to
be

HomC(c, d)z := HomC(c, d[z])

where (−)[z] : C → C denotes the action of z ∈ Z on C. Conversely, if C is a category enriched in

Z-graded k-modules and if moreover for every z ∈ Z, the inner-hom functor HomC(c,−) : C → modZk
is corepresentable (e.g. if C is presentably enriched), then the enrichment arises from a Z-action on the
underlying category. These constructions provide an equivalence between the category of presentable
k-linear categories with an Z-action and the category of categories presentably enriched in Z-graded
k-modules. In this section, we generalize these constructions to our ∞-categorical setting.

Definition 4.3.1. Let J ∈ CAlg(Cat∞).

(1) For K ∈ CAlg(Sp≥0), we define the ∞-category addJK of J-graded additive, idempotent-
complete K-linear categories as

addJK := Fun(Jop, addK).
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(2) For K ∈ CAlg(Sp), we define the ∞-category stJK of J-graded stable, idempotent-complete
K-linear categories as

stJK := Fun(Jop, stK).

We need the following compatibilities of structures with the functor Kb from Proposition 4.2.7.

Proposition 4.3.2. Let J ∈ CAlg(Cat∞).

(1) Day convolution induces presentably symmetric monoidal structures on addJK and on stJK for
K ∈ CAlg(Sp≥0) and K ∈ CAlg(Sp), respectively.

(2) Composing with the symmetric monoidal left adjoint Kb : addK → stK from Proposition 4.2.7
induces a symmetric monoidal functor

Kb : addJK = Fun(Jop, addK)→ Fun(Jop, stK) = stJK

left adjoint to the forgetful functor. Moreover, for C ∈ addJK = Fun(Jop, addK), the unit of the
adjunction C → Kb(C) is pointwise (i.e. for every j ∈ J) fully faithful.

Proof. Since stK and addK are in CAlg(PrL) by Proposition 4.2.7 and J ∈ CAlg(Cat∞), Corollary 3.5.10
induces a presentably symmetric monoidal structure on Fun(Jop, stK) and Fun(Jop, addK). Under the
equivalence Fun(Jop, addK) ≃ addK ⊗P(J) of Lemma 3.5.9, the postcomposition functor becomes the

functor Kb⊗ idP(J) and hence is a morphism in CAlg(PrL). Given C ∈ addJK, i.e. C− : Jop → addK, the

unit of the adjunction C → Kb(C) is given by the natural transformation which at an object j ∈ J is
the unit Cj → Kb(Cj) of the adjunction Kb : addK → stK. This is fully faithful by Proposition 4.2.7. □

We are interested in ∞-categories with an action by a commutative monoid. For Z ∈ CAlg(S), let
BZ ∈ CAlg(Cat∞) denote its delooped symmetric monoidal ∞-category18. Since Z is commutative,

there is a symmetric monoidal equivalence BZ ≃ BZop. Then an object of addBZ
K = Fun(BZ, addK) is

precisely a small additive, idempotent complete K-linear ∞-category with an action by Z via K-linear
additive functors (and similarly for stBZ

K ).
The equivalence between gradings and actions derives from the following proposition:

Proposition 4.3.3. Let Z ∈ CAlg(S) with delooping BZ ∈ CAlg(Cat∞). Then, there is a symmetric
monoidal equivalence between Fun(BZ,S) with its Day convolution symmetric monoidal structure and
ModZ(S) with symmetric monoidal structure given by relative tensor product over Z.
Proof. For C ∈ CAlg(PrL) for which HomC(I,−) : C → S preserves all small colimits and is conservative,
it follows from [Lur17, Prop. 4.8.5.21] that C is symmetric monoidally equivalent to ModEndC(I)(S)
where EndC(I) ∈ CAlg(S) is equipped with the commutative monoid structure induced from symmetric
monoidality of C.

If J ∈ CAlg(Cat∞), then the Yoneda embedding J → Fun(Jop,S) is symmetric monoidal for the
Day convolution symmetric monoidal structure. In particular, the monoidal unit of Fun(Jop,S) is the
image under the Yoneda embedding of I ∈ J , and its endomorphism algebra agrees with EndJ(I).
In particular, as a representable presheaf, HomFun(Jop,S)(I,−) : Fun(Jop,S) → S preserves all small
colimits.

Let now J = BZ for a Z ∈ CAlg(S). The functor HomFun(BZop,S)(I,−) : Fun(BZop,S) → S
then forgets the Z action and is hence conservative. Since the unit of BZ is the basepoint pt with
EndBZ(pt) ≃ Z as commutative algebras in spaces, and using the symmetric monoidal equivalence
BZop ≃ BZ induced by commutativity of Z, it therefore follows [Lur17, Prop. 4.8.5.21] that we have
symmetric monoidal equivalences Fun(BZ,S) ≃ Fun(BZop,S) ≃ ModEndBZ(pt)(S) = ModZ(S). □

18If Z is a grouplike commutative monoid, the delooping BZ is simply the classifying space of Z with its induced
grouplike commutative monoid structure.
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We now prove the main proposition of this subsection: For a homotopy coherent abelian monoid Z,
the ∞-category of compactly generated presentably ModZK -enriched ∞-categories is equivalent to the
category Fun(BZ, stK), i.e. to the category of K-linear stable ∞-categories with an action by Z. This
equivalence is symmetric monoidal for the Day convolution structure on Fun(BZ, stK).
Proposition 4.3.4. Fix Z ∈ CAlg(S).

(1) For K ∈ CAlg(Sp≥0), the equivalence (−)cp : PrL,cpadd ≃ addK : PΣ induces a symmetric monoidal
equivalence:

PrL,cp
Mod

≥0,Z
K

addBZ
K

(−)cp

PΣ

(2) For K ∈ CAlg(Sp), the equivalence (−)c : PrL,cst ≃ stK : Ind induces a symmetric monoidal
equivalence:

PrL,c
ModZ

K
stBZ

K
(−)c

Ind

Proof. We prove statement (2), the proof of statement (1) is entirely analogous. Consider the symmetric
monoidal equivalences

stBZ
K := stK ⊗ P(BZ) ≃ stK ⊗ModZ(S) ≃ ModModK(Pr

L,c)⊗ModZ(S),
where the first equivalence is given by Proposition 4.3.3 and the second equivalence follows from
Observation 4.2.4. It then follows from Corollary 3.1.9 and Lemma 3.2.11 that

ModModK(Pr
L,c)⊗ModZ(S) ≃ ModP(Z)⊗ModK(Pr

L,c) = ModModZ
K
(PrL,c). □

Observation 4.3.5. As presentably symmetric monoidal∞-categories, PrL,cp
Mod

≥0,Z
K

and PrL,c
ModZ

K
are self-

enriched. Transporting these self-enrichments along the equivalences from Proposition 4.3.4 provides
enrichments in addBZ

K and stBZ
K , respectively, i.e.

PrL,cp
Mod

≥0,Z
K

∈ CAlg(Ĉat[addBZ
K ]) and PrL,c

ModZ
K
∈ CAlg(Ĉat[stBZ

K ]).

It follows from Lemma 4.1.6 applied to Mod(Mod
≥0,Z
K )

cp(Cat⊔,idem
∞ ) that given C,D ∈ PrL,cp

Mod
≥0,Z
K

,

their addBZ
K -enriched hom is the small idempotent-complete additive ∞-category

FunL,cp
Mod

≥0,BZ
K

(C,D) ∈ addBZ
K

with CProjK and Z-action induced by the Mod≥0,Z
K -action on D.

Similarly, it follows from Lemma 4.1.6 applied to Mod(ModZ
K )

cp(Catrex,idem∞ ) that given C,D ∈
PrL,c

ModZ
K
, their stBZ

K -enriched hom is the small idempotent-complete stable ∞-category

FunL,c
ModBZ

K
(C,D) ∈ stBZ

K

with PerfK and Z-action induced by the ModZK -action on D.
4.4. ∞-Morita theory. For any monoidal 1-category V with reflective coequalizers distributing over
the tensor product, one may construct a Morita 2-category whose objects are algebras in V, whose
1-morphisms are bimodules and whose 2-morphisms are bimodule maps. If V is moreover presentably
symmetric monoidal, and hence self-enriched, then also the categories of bimodules ABModB(V) will
inherit a V-enrichment and thus the Morita 2-category inherits a V-enrichment at the level of 2-
morphisms. The goal of this section it to establish ∞-categorical variants of these statements to be
used for our homotopy coherent construction of the Soergel (2, 2)-category in Section 6.
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Various∞-categorical constructions of (∞, 2)-Morita categories exist in the literature, see e.g. [Lur17],
[Hau17], [JS17] and references therein. Due to their compatibility with enrichment, we follow ideas
from [Lur17]. Our starting point is the following:

Proposition 4.4.1 ([Lur17, Thm. 4.8.5.15, Rem. 4.8.4.9]). Let V ∈ CAlg(PrL) and A,B ∈ Alg(V).
(1) The ∞-category RModA(V) carries a left action by V, and can be viewed as an object in

ModV(Pr
L). This defines a symmetric monoidal functor

RMod−(V) : Alg(V)→ ModV(Pr
L).

(2) Given an A–B bimodule AMB ∈ ABModB(V), tensoring with M over A

−⊗A MB : RModA(V)→ RModB(V)

defines a cocontinuous V-linear functor, i.e. an object in FunLV(RModA(V),RModB(V)). These
assemble into an equivalence:

ABModB(V)
≃−→ FunLV(RModA(V),RModB(V)).

Furthermore, composition of functors corresponds to the relative tensor product of bimodules.

We can therefore think of the full subcategory of ModV(Pr
L) on those presentable V-module cate-

gories which are of the form RModA(V) for algebra objects A in V, as an∞-categorical Morita category
with objects algebras, morphisms given by bimodules and composition given by relative tensor product
(cf. [Lur17, Rem. 4.8.4.9]). In the following, we will be interested in versions of the Morita category
where we further restrict our bimodules requiring certain compactness or projectivity properties:

Notation 4.4.2. Given V ∈ Alg(PrL,cp) and A,B ∈ Alg(V), we denote by

ABModcpB (V) ⊆ ABModB(V)
the full subcategory on those A–B-bimodules which are compact-projective as right B-modules.

Similarly, given V ∈ Alg(PrL,c) and A,B ∈ Alg(V), we denote by

ABModcB(V) ⊆ ABModB(V)
the full subcategory on those A–B-bimodules which are compact as right B-modules.

For V ∈ CAlg(PrL,c) and A ∈ Alg(V), the ∞-category RModA(V) is compactly generated and the
V-action preserves compact generators, see Lemma 3.2.12.(5)-(6); the functor RMod−(V) : Alg(V) →
ModV(Pr

L) thus factors through ModV(Pr
L,c). The analogous statement holds for V ∈ CAlg(PrL,cp)

by Lemma 3.2.12.(1)-(2).

Corollary 4.4.3. The following hold.

(1) For V ∈ CAlg(PrL,cp), A,B ∈ Alg(V) and AMB ∈ ABModB(V), the functor

−⊗A M : RModA(V)→ RModB(V)
preserves compact projective objects if and only ifMB, viewed as a right B-module, is a compact
projective object in RModB(V). The equivalence from Proposition 4.4.1.(2) restricts to

ABModcpB (V) ≃ FunL,cp
V (RModA(V),RModB(V)).

(2) For V ∈ CAlg(PrL,c), A,B ∈ Alg(V) and AMB ∈ ABModB(V), the functor

−⊗A M : RModA(V)→ RModB(V)
preserves compact objects if and only if M , viewed as a right B-module, is a compact object in
RModB(V). The equivalence from Proposition 4.4.1.(2) restricts to an equivalence

ABModcB(V) ≃ FunL,c
V (RModA(V),RModB(V)).
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Proof. We will prove statement (1), the proof of statement (2) is completely analogous. Since RModA(V)
is projectively generated by free modules v ⊗ A, see Lemma 3.2.12.(3), where v ∈ V is compact pro-
jective, it suffices to show that − ⊗A M : RModA(V) → RModB(V) preserves compact projective
objects if and only if it sends such free modules v ⊗ A to compact projectives in RModB(V) for all
compacts v ∈ V. Since the action functor V × RModB(V) → RModB(V) takes pairs of compact pro-
jectives to compact projectives by Lemma 3.2.12.(2), this in turn is equivalent to the assertion that
A⊗A MB ≃MB ∈ RModB(V) is compact projective. □

We are now ready to define our Morita categories of interest.

Definition 4.4.4. Fix Z ∈ CAlg(S).
Given K ∈ CAlg(Sp≥0), we define Moritacp(Mod≥0,Z

K ) to be the full symmetric monoidal addBZ
K -

enriched subcategory of PrL,cp
Mod

≥0,Z
K

(equipped with addBZ
K -enrichment as in Observation 4.3.5) on the

objects in the image of the symmetric monoidal functor Alg(Mod≥0,Z
K ) → PrL,cp

Mod
≥0,Z
K

from Proposi-

tion 4.4.1.(1).

Given K ∈ CAlg(Sp), we define Moritac(ModZK ) to be the full symmetric monoidal stBZ
K -enriched

subcategory of PrL,c
ModZ

K
(equipped with stBZ

K -enrichment as in Observation 4.3.5) on the objects in the

image of the symmetric monoidal functor Alg(ModZK )→ PrL,c
ModZ

K
from Proposition 4.4.1.(1).

We unpack the relevant properties of these Morita categories:

Corollary 4.4.5. Fix Z ∈ CAlg(S).
(1) Given K ∈ CAlg(Sp≥0), Definition 4.4.4 defines a large symmetric monoidal addBZ

K -enriched
∞-category

Moritacp(Mod≥0,Z
K ) ∈ CAlg(Ĉat[addBZ

K ])

with a symmetric monoidal surjective-on-objects functor Alg(Mod≥0,Z
K )→ Moritacp(Mod≥0,Z

K )

and such that the addBZ
K -enriched hom between A,B in Alg(Mod≥0,Z

K ) is given by

ABModcpB (Mod≥0,Z
K ) ∈ addBZ

K ,

with the CProjK and Z-action induced by their respective actions on Mod≥0,Z
K .

The symmetric monoidal structure is given by the tensor product in Mod≥0,Z
K , and the com-

position of 1-morphisms is given by the relative tensor product of bimodules therein.
(2) Given K ∈ CAlg(Sp), Definition 4.4.4 defines a large symmetric monoidal stBZ

K -enriched ∞-
category

Moritac(ModZK ) ∈ CAlg(Ĉat[stBZ
K ])

with a symmetric monoidal surjective-on-objects functor Alg(ModZK )→ Moritacp(ModZK ), and

such that the stBZ
K -enriched hom between A,B in Alg(ModZK ) is given by

ABModcB(ModZK ) ∈ stBZ
K ,

with the PerfK and Z-action induced by their respective actions on ModZK .

The symmetric monoidal structure is given by the tensor product in ModZK , and the compo-
sition of 1-morphisms is given by the relative tensor product of bimodules therein.

(3) Given K ∈ CAlg(Sp≥0), the symmetric monoidal inclusion Mod≥0,Z
K ↪→ ModZK from Observa-

tion 3.5.17 induces a symmetric monoidal addBZ
K -enriched functor

Moritacp(Mod≥0,Z
K )→ Moritac(ModZK ),
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where Moritac(ModZK ) is considered addBZ
K -enriched by transporting its stBZ

K -enrichment along

the forgetful functor stBZ
K → addBZ

K .

On objects, this functor acts via the inclusion (Alg(Mod≥0,Z
K ))≃ ↪→ (Alg(ModZK ))

≃, and on

hom-categories as the additive K-linear Z-equivariant (i.e. addBZ
K -morphism) full inclusion

AModcpB (Mod≥0,Z
K ) ↪→ AModcB(ModZK ).

Proof. Statements (1) and (2) follow immediately from Corollary 4.4.3 and Observation 4.3.5. For

statement (3), the inclusion Mod≥0,Z
K ↪→ ModZK induces a symmetric monoidal left adjoint functor

PrL,cp
Mod

≥0,Z
K

≃ Mod
Mod

≥0,Z
K

(PrL,cp)
Mod

Mod
≥0,Z
K

(PrL,cp→PrL,c)
−−−−−−−−−−−−−−−−−−→ Mod

Mod
≥0,Z
K

(PrL,c)

−⊗
Mod

≥0,Z
K

ModZ
K

−−−−−−−−−−−−→ ModModZ
K
(PrL,c) ≃ PrL,c

ModZ
K
.

Analogous to Proposition 3.4.5, this functor fits into a commuting square in CAlg(PrL) of the form

(4.5)

addBZ
K stBZ

K

PrL,cp
Mod

≥0,Z
K

PrL,c
ModZ

K
,

Kb

≃ ≃

where the top horizontal morphism is left adjoint to the forgetful functor. Using (4.5) to consider the

bottom horizontal morphism as a morphism in CAlg(PrL)addBZ
K /, it enhances by Proposition 4.1.7 to

a symmetric monoidal addBZ
K -enriched functor PrL,cp

Mod
≥0,Z
K

→ PrL,c
ModZ

K
. (By commutativity of (4.5) and

Observation 4.1.2, we may understand the addBZ
K -enrichment of PrL,c

ModZ
K
as induced by restricting its

stBZ
K -enrichment from Observation 4.3.5 along the forgetful functor stBZ

K → addBZ
K .) For an algebra

A ∈ Alg(Mod≥0,Z
K ), it follows from [Lur17, Thm. 4.8.4.6] that

RModA(Mod≥0,Z
K )⊗

Mod
≥0,Z
K

ModZK ≃ RModA(ModZK ).

Thus, the addBZ
K -enriched functor PrL,cp

Mod
≥0,Z
K

→ PrL,c
ModZ

K
restricts to an addBZ

K -enriched functor between

the full subcategories

Moritacp(Mod≥0,Z
K )→ Moritac(ModZK ).

Its explicit description on additive hom-categories can be unpacked from Observation 4.1.2. □

4.5. Morita categories of discrete flat algebras. For the rest of this section, we focus on the case
where K = Hk for an ordinary commutative ring k and where Z is a discrete commutative monoid
Z. Our goal of this subsection is to restrict our Morita categories from Corollary 4.4.5 to certain
symmetric monoidal full subcategories which only contain discrete (i.e. ordinary) k-algebras and whose
hom-categories are given by ordinary categories of discrete graded bimodules, or their derived variants.

Definition 4.5.1. A discrete Z-graded k-module M is flat if ⊕z∈ZMz is flat19 as a k-module. We let

modZ,flat
k denote the full subcategory of the ordinary category of discrete Z-graded k-modules modZk

on the flat modules. A (not necessarily commutative) discrete Z-graded k-algebra A is flat if it is flat
as a Z-graded k-module.

Remark 4.5.2. In particular, the ordinary category of discrete Z-graded k-algebras is Alg(modZ,flat
k ).

19Recall that a module M over a ring k is called flat if −⊗k M is an exact functor.
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The following two observations and example are crucial when connecting back to Section 2.

Observation 4.5.3. An ordinary Z-graded k-module M is flat if and only if it is degreewise flat, i.e.
each graded component Mz is a flat k-module for all z ∈ Z. This follows from the fact that flatness is
preserved under infinite coproducts and retracts.

Example 4.5.4. Free modules are flat. In particular, if k is a field, all Z-graded k-vector spaces are
flat, and if k is an ordinary commutative ring and n ≥ 0, the polynomial algebra k[x1, . . . , xn] is flat,
and hence it is also flat if considered as a Z-graded k-algebra with generators xi in some degree ni ∈ Z.

Observation 4.5.5. As flatness is closed under tensor products, modZ,flat
k is a symmetric monoidal

full subcategory of modZk . On the other hand, modZ,flat
k is also a symmetric monoidal full subcategory

of Mod≥0,Z
Hk ↪→ ModZHk: under the equivalence ModZHk ≃ D(modZk ) by Example 3.5.15. The tensor

product in D(modZk ) is given by Day convolution of derived tensor products, which reduces to the Day
convolution of ordinary tensor products on flat modules. In particular, tensor products of discrete flat
Z-graded k-algebras are also discrete and flat.

Notation 4.5.6. For flat Z-graded k-algebras A and B, we let AgrbmodB := ABModB(modZk ) denote

the abelian 1-category of ordinary graded A–B bimodules. Let Agrbmodgr−cp
B denote its full subcate-

gory on those bimodules that are graded-compact-projective, see Definition 3.6.8, as right B-modules.
Let D(AgrbmodB)

gr−perf denote the full subcategory of the derived ∞-category D(AgrbmodB) on
those objects that are graded-perfect, see Remark 3.6.10 and preceeding definition, as derived right
B-modules.

Most of the constructions in Section 6 will build on the following ∞-categories.

Definition 4.5.7. Let k be an ordinary commutative ring and Z a discrete commutative monoid. We
define

Morflat,gr−proj(modZk ) ⊆ Moritacp(Mod≥0,Z
Hk )

to be the full addBZ
Hk -enriched subcategory on the discrete flat Z-graded k-algebras.

Similarly, we define
DMorflat,gr−perf(modZk ) ⊆ Moritac(ModZHk)

to be the full stBZ
Hk -enriched subcategory on the discrete flat Z-graded k-algebras.

The following justifies the terminology ’Morita categories’, see also Example 6.0.2.

Corollary 4.5.8. Let k be an ordinary commutative ring and Z a discrete commutative monoid.

(1) Definition 4.5.7 defines a large symmetric monoidal addBZ
Hk -enriched ∞-category

Morflat,gr−proj(modZk ) ∈ CAlg(Ĉat[addBZ
Hk ])

equipped with a symmetric monoidal surjective-on-objects functor

Alg(modZ,flat
k )→ Morflat,gr−proj(modZk ).

The additive k-linear hom-category between algebras A,B ∈ Alg(modZ,flat
k ) is given by the

ordinary category Agrbmodgr−cp
B with Z-action by grading shift.

Composition is given by the ordinary relative tensor product, and the monoidal structure by
the ordinary tensor product over k.

(2) Definition 4.5.7 defines a large symmetric monoidal stBZ
Hk -enriched ∞-category

DMorflat,gr−perf(modZk ) ∈ CAlg(Ĉat[stBZ
Hk ])

equipped with a symmetric monoidal surjective-on-objects functor

Alg(modZ,flat
k )→ DMorflat,gr−perf(modZk ).
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The stable k-linear hom-category between algebras A,B ∈ Alg(modZ,flat
k ) is D(AgrbmodB)

gr−perf

with Z-action by grading shift.
Composition is given by the derived relative tensor product, and the monoidal structure by

the derived tensor product over k.
(3) The functor from Corollary 4.4.5.(3) restricts to a symmetric monoidal addBZ

Hk -enriched functor

Morflat,gr−proj(modZk )→ DMorflat,gr−perf(modZk ).

On objects this functor acts via the identity on Alg(modZ,flat
k )≃; on hom-categories between

A,B ∈ Alg(modZ,flat
k ) it is given by the additive k-linear Z-equivariant fully faithful inclusion

Agrbmodgr−cp
B ↪→ D(AgrbmodB)

gr−perf .

Proof. Since the derived tensor product of discrete flat Z-graded algebras is again a discrete and

flat algebra, the functor Alg(modZ,flat
k ) → Alg(Mod≥0,Z

Hk ) is symmetric monoidal, and hence the full

subcategories Morflat,gr−proj(modZk ) and DMorflat,gr−perf(modZk ) are closed under the tensor product

in Moritacp(Mod≥0,Z
Hk ) and Moritac(ModZHk), respectively. Denoting the derived and underived Day

convolution tensor product by ⊗L,gr and ⊗gr, respectively, and using Proposition 3.6.9 and Observa-
tion 4.5.5 we obtain the following equivalences for discrete flat Z-graded k-algebras A and B

ABModB(ModZHk) ≃ RModAop⊗L,grB(ModZHk) ≃ RModAop⊗grB(ModZHk)

≃ D(grmodAop⊗grB) ≃ D(AgrbmodB).

Recalling Notation 4.4.2 for the full subcategories ABModcpB (Mod≥0,Z
Hk ) and ABModcB(ModZHk) on those

bimodules which are compact-projective, resp. compact as right B-modules, the above equivalence
restricts to an equivalence between subcategories (see Notation 4.5.6)

ABModcpB (Mod≥0,Z
Hk ) ≃ Agrbmodgr−cp

B and ABModcB(ModZHk) ≃ D(AgrbmodB)
gr−perf .

Using these observations, Corollary 4.5.8 follow directly from Corollary 4.4.5. □

Remark 4.5.9. The hom-categories Agrbmodgr−cp
B of Morflat,gr−proj(modZk ) are ordinary 1-categories,

hence Morflat,gr−proj(modZk ) is a (2,2)-category. On the other hand, DMorflat,gr−perf(modZk ) is a genuine
(∞, 2)-category with non-trivial higher morphisms.

Observation 4.5.10. By definition, DMorflat,gr−perf(modZk ) is a full symmetric monoidal subcategory

of PrL,c
ModZ

Hk

. Thus, it comes equipped with a symmetric monoidal fully faithful stBZ
Hk -enriched functor

DMorflat,gr−perf(modZk ) ↪→ PrL,c
ModZ

Hk

(−)c≃ stBZ
Hk .

Explicitly, the functor in Observation 4.5.10 sends a flat Z-graded k-algebra A to the stable ∞-
category

RModHA

(
ModBZ

Hk

)c Prop. 3.6.9≃ D(grmodA)
gr−perf

of graded-perfect right A-modules, with Z-action given by grading shift.
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5. (∞, k)-categories and their factorization systems

In this section, we introduce our (∞, k)-categorical framework, and establish the existence of various
factorization systems generalizing the familiar (surjective-on-objects, fully faithful)-factorization system
on Cat∞. We refer the reader to Appendix A, especially A.1, for motivation and a leisurely introduction
to (∞, k)-categories.
5.1. Basic notions in (∞, k)-category theory. Throughout, we will use the theory of enriched
∞-categories developed in [GH15], see also Appendix A.10.

Definition 5.1.1. We set Cat(∞,0) := S to be the ∞-category of small spaces, and equip it with its

Cartesian presentably symmetric monoidal structure. We inductively define the Cartesian20 presentably
symmetric monoidal ∞-category of (∞, k)-categories Cat(∞,k) := Cat[Cat(∞,k−1)].

Remark 5.1.2. In [Hau15, Thm. 1.2], Haugseng showed that the ∞-category Cat(∞,k) from Defini-
tion 5.1.1 satisifes the axioms of Barwick and Schommer-Pries [BS21] and hence is equivalent to most
other known models of the ∞-category of (∞, k)-categories.
Observation 5.1.3. Consider the diagram

Cat∞ S

|−|

⊥

⊥
i

ι0

of adjunctions, where i denotes the fully faithful inclusion of spaces as ∞-groupoids. Since all these
functors preserve finite products21 , they are all symmetric monoidal. By applying Cat[−] iteratively,
we obtain an analogous diagram

Cat(∞,k+1) Cat(∞,k)

|−|k

⊥

⊥
ik+1

ιk

of symmetric monoidal adjoint functors for any k ≥ 0 (with ik+1 fully faithful). Thereafter, for any
j ≥ k ≥ 0 we obtain an analogous diagram

(5.1) Cat(∞,j) Cat(∞,k)

|−|k

⊥

⊥
ij

ιk

of symmetric monoidal adjoint functors by composition.

Definition 5.1.4. In diagram (5.1), we refer to |− |k as the (∞, k)-category completion functor and to
ιk as the maximal sub-(∞, k)-category functor.22 For brevity, we may omit the fully faithful inclusion

20For V a Cartesian symmetric monoidal ∞-category, the induced symmetric monoidal structure on Cat[V] is also

Cartesian: by construction, the symmetric monoidal structure on AlgCat[V] is Cartesian; since the inclusion Cat[V] ↪→
AlgCat[V] is a right adjoint and preserves products, it follows that the symmetric monoidal structure on Cat[V] is also

Cartesian.

21One can see that the functor Cat∞
|−|−−→ S preserves finite products e.g. by observing that it can be computed as

the geometric realization of complete Segal spaces and ∆op is sifted [Lur09, Cor. 4.2.3.5].
22In the case that k = 0, we may instead respectively refer to these as the ∞-groupoid completion and maximal

sub-∞-groupoid (or even simply maximal subgroupoid) functors.
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functor ij from our notation, implicitly considering an (∞, k)-category as an (∞, j)-category with no
noninvertible i-morphisms for any i > k.

Observation 5.1.5. For any j ≥ k ≥ 0, the inclusion Cat(∞,k)

ij
↪−→ Cat(∞,j) identifies Cat(∞,k) as

the full subcategory of Cat(∞,j) on those (∞, j)-categories whose i-morphisms are all invertible for all

i > k [GH15, Prop. 6.1.7(iv)].23 We use this fact without further comment.

Definition 5.1.6. The n-cell (or walking n-morphism) is the (∞, n)-category cn := Σn[pt] ∈ Cat(∞,n).
24

Its boundary (or the walking pair of parallel (n − 1)-morphisms25) is the (∞, n)-category ∂cn :=
∂Σn[pt] := Σn[∅] (which is in fact an (∞, n − 1)-category). We use both notations interchangeably,
depending on our desired emphasis. We also introduce the notation

jn : ∂cn := Σn[∅] Σ[∅−→pt]−−−−−−→ Σn[pt] =: cn

for the inclusion, which corepresents the functor taking an n-morphism to its source and target (which
are parallel (n− 1)-morphisms).

Observation 5.1.7. For n ≥ 0, it follows from [GH15, Lem. 6.1.9] that the map |jn|0 : |∂cn|0 → |cn|0
is equivalent to the map Sn−1 → pt. By induction, it follows that for k < n, |jn|k : |∂cn|k → |cn|k is
equivalent to the map Σk[Sn−k−1]→ Σk[pt] = ck induced by Sn−k−1 → pt.

Notation 5.1.8. Let α : ∂ck → C be a pair of parallel (k−1)-morphisms in an (∞, k)-category C. The
space of k-morphisms filling α is

kHomC(α) := HomCat(∞,k)
(ck, C)×HomCat(∞,k)

(∂ck,C) {α}.

Observation 5.1.9. Given a space X ∈ S and k ≥ 0, the map ∅ → X induces a functor of (∞, k)-
categories ∂ck = Σk[∅] → Σk[X]. It then follows from the universal property of Σ that for any
C ∈ Cat(∞,k) and any pair of parallel (k − 1)-morphisms α : ∂ck → C, we obtain an equivalence of
spaces

HomCat(∞,k)
(Σk[X], C)×HomCat(∞,k)

(∂ck,C) {α} ≃ HomS(X, kHomC(α)).

5.2. Truncatedness and connectedness. Here we recall the standard definition of the (n-connected,
n-truncated) factorization system on the ∞-category S of spaces. This will be the base case for our
factorization systems on (∞, k)-categories.
Definition 5.2.1. For any n ≥ 0, a space X ∈ S is called

• n-connected if X is connected and if πi(X,x) = 0 for all i ≤ n and all x ∈ X and
• n-truncated if πi(X,x) = 0 for all i > n and all x ∈ X.

We extend this to the case that n = −1 by declaring that X is

• (−1)-connected if it is nonempty and
• (−1)-truncated if it is either empty or contractible,

and to the case that n = −2 by declaring that X is

23Note that the functor [1] = c1 → c0 = pt is a localization at the universal 1-morphism: it is merely a condition that

a functor c1
α−→ C admit an extension along it, namely that α selects an equivalence. By induction (using the universal

property of Σ[−]), it follows that the functor cn+1
Σn[c1→c0]−−−−−−−−→ cn is a localization at the universal (n + 1)-morphism:

it is merely a condition that a functor cn+1
α−→ C admit an extension along it, namely that α selects an invertible

(n+ 1)-morphism.

24Here, V
Σ[−]−−−→ Cat[V] denotes the “categorical suspension” functor (see Appendix A.10). As the name suggests, cn

is the free (∞, n)-category on an n-morphism.
25Note that ∂c1 = S0 = c0 ⊔∂c0 c0. Since Σ commutes with colimits, we see that ∂cn = cn−1 ⊔cn−1 cn−1 for n ≥ 1,

i.e., ∂cn indeed corepresents pairs of parallel (n− 1)-morphisms.
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• always (−2)-connected and
• (−2)-truncated if it is contractible.

For any n ≥ −2, we declare that a map of spaces is n-connected26 (resp. n-truncated) if its fibers
are all such. By [Lur09, Ex. 5.2.8.16] the classes of (n-connected, n-truncated) maps form a fac-
torization system of small generation on S, generated by the single morphism Sn+1 → pt. See also
Example B.1.16.

Example 5.2.2. To obtain examples, the following explicit alternative descriptions of n-connectedness
and n-truncatedness for low values of n are useful.

(1) A space is 0-connected if and only if it is connected (and in particular nonempty), and it is
1-connected if and only if it is simply connected (and in particular connected).

(2) A map of spaces is always (−2)-connected, and it is (−1)-connected if and only if it is surjective.
(3) A space is n-truncated if and only if it is an n-type, e.g. it is 0-truncated if and only if it is

discrete.
(4) A map of spaces is (−2)-truncated if and only if it is an equivalence, it is (−1)-truncated if

and only if it is a monomorphism, and it is 0-truncated if and only if it is a covering map (in
the classical sense).

Observation 5.2.3. We note the following basic facts, which we use without further comment.

(1) For any n ≥ −2, a space X is n-connected (resp. n-truncated) if and only if the map X → pt
is such.

(2) For any n ≥ −2, a space is both n-connected and n-truncated if and only if it is contractible,
and hence a map is both n-connected and n-truncated if and only if it is an equivalence.

(3) For any n ≥ −2, we have the implications

n-connected⇐= (n+ 1)-connected and n-truncated =⇒ (n+ 1)-truncated

for spaces and hence also for maps of spaces.
(4) For any n ≥ −2, both n-connected and n-truncated maps are stable under base change.

(5) By the long exact sequence in homotopy groups, for any n ≥ −1, a map X
f−→ Y of spaces is

• n-connected if and only if for every x ∈ X the map πi(X,x)
πi(f)−−−→ πi(Y, f(x)) is

– an isomorphism for all 0 ≤ i < n+ 1 and
– surjective for i = n+ 1,

and

• n-truncated if and only if for every x ∈ X the map πi(X,x)
πi(f)−−−→ πi(Y, f(x)) is

– an isomorphism for all i > n+ 1 and
– injective for i = n+ 1.

Throughout, we will use the following cancellation properties generalizing well-known facts about
surjections and injections of sets.

Lemma 5.2.4. Suppose that A
f−→ B

g−→ C are composable maps of spaces, and let n ≥ −2.
(1) If g is (n+ 1)-connected and gf is n-connected, then f is n-connected.
(2) If g is (n+ 1)-truncated and gf is n-truncated, then f is n-truncated.

Proof. Since connectivity and truncatedness of maps of spaces are defined fiberwise, we may henceforth
assume that C = ∗. In this case, (1) and (2) become:

26Readers be aware that it is also common to refer to n-connected spaces and maps as “(n+ 1)-connective”, see for
example [Lur09, Terminology].
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(1) f : A→ B is a map from an n-connected space to an (n+ 1)-connected space, then the fibers
of f are n-connected.

(2) If f : A→ B is a map from an n-truncated space to an (n+1)-truncated space, then the fibers
of f are n-truncated.

For n = −2, these statements are obvious, for higher n they can be easily verified from the long exact
sequence of homotopy groups associated to f . □

Proposition 5.2.5. Fix any n ≥ −2. A commutative square of spaces

A B

C D

n-trunc.

n-conn. (n+1)-conn.

(n+1)-trunc.

in which the maps are truncated and connected as indicated is necessarily a pullback square.

Proof. Consider the commuting diagram

A

B ×D C B

C D.

n-trunc.

n-conn.

(n+1)-trunc.

(n+1)-conn. (n+1)-conn.

(n+1)-trunc.

where we have used that truncated and connected maps are stable under pullback. By Lemma 5.2.4,
the map A→ B ×D C is both n-connected and n-truncated, and so is an equivalence. □

5.3. Factorization systems for (∞, k)-categories. In this subsection we define n-surjective and
n-faithful morphisms in Cat(∞,k) and prove in Theorem 5.3.7 that they form factorization systems,
using the main result Theorem B.4.1 of Appendix B. Furthermore, we establish various properties of
these factorization systems.

Definition 5.3.1. Consider a morphism C F−→ D in Cat(∞,k) for some k ≥ 0 and let n ≥ −2.
(1) We declare that any F is (−2)-surjective and that F is (−2)-faithful if it is an equivalence.
(2) If k = 0, we say that F is n-surjective if it is n-connected and n-faithful if it is n-truncated.27

(3) For n > −2 and k > 0, we inductively define F to be
(a) n-surjective if it is surjective on objects and for every c, c′ ∈ C the morphism HomC(c, c

′)→
HomD(Fc, Fc

′) in Cat(∞,k−1) is (n− 1)-surjective, and
(b) n-faithful if for every c, c′ ∈ C the morphism HomC(c, c

′)→ HomD(Fc, Fc
′) in Cat(∞,k−1)

is (n− 1)-faithful.

Example 5.3.2. We give a few explicit alternative descriptions of n-surjectivity and n-faithfulness for
low values of n (and any k ≥ 0).

(1) A functor is (−1)-surjective if and only if it is surjective on objects.
(2) A functor is (−1)-faithful if and only if it is fully faithful.
(3) A functor is 0-surjective if and only if it is surjective on objects and on 1-morphisms.

27We nevertheless continue to use the terms “n-connected” and “n-truncated” (referring to maps of spaces) since
they play a fundamental role as the base case of our inductive definitions.
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(4) A functor is 0-faithful if and only if the induced functors on hom-categories are fully faithful.

Notation 5.3.3. To simplify our terminology, we refer to a 0-faithful functor simply as faithful.

Remark 5.3.4. A functor of (∞, 0)-categories is faithful if and only if it is a covering map (recall
Example 5.2.2.(4)). Hence, in general one may think of a faithful functor as a sort of “directed covering
map”.

Recall the cancellation property Lemma 5.2.4 of truncated and connected maps of spaces. The
second part of Lemma 5.2.4 generalizes to functors of (∞, k)-categories:

Lemma 5.3.5. Let k ≥ 0 and n ≥ −2, and consider composable functors A F−→ B G−→ C of (∞, k)-
categories. Then, if G is (n+ 1)-faithful and GF is n-faithful, then F is n-faithful.

Proof. The case n = −2 is the straight-forward statement that a section of a fully faithful functor
is an equivalence. For n ≥ −1, we induct on k ≥ 0. The base case k = 0 is Lemma 5.2.4. For
k ≥ 1, F being n-faithful is equivalent to proving that for a, a′ ∈ A the induced functor of (∞, k − 1)-
categories HomA(a, a

′)→ HomB(Fa, Fa
′) is (n−1)-faithful. Since the composable sequence of functors

of (∞, k − 1)-categories HomA(a, a
′) → HomB(Fa, Fa

′) → HomC(GFa,GFa
′) the last functor is n-

faithful, and the composite is (n − 1)-faithful by assumption, the first functor is (n − 1)-faithful by
induction. □

Remark 5.3.6. The first part of Lemma 5.2.4 does not generalize to higher categories: If G is (n+1)-
surjective and GF is n-surjective, then it does not necessarily follow that F is n-surjective. For
example, let A be the category freely generated by two objects a and b and two morphisms f : a → b
and g : b→ a. Then, in the composite pt→ A → pt, the second functor is 0-surjective (i.e. surjective
on objects and hom-spaces), and the composite is an equivalence (in particular (−1)-surjective), but
the first functor is not surjective on objects and hence not (−1)-surjective.

Just as with the (n-connected, n-truncated) factorization system on the ∞-category of spaces, the
n-surjective and n-faithful functors form a factorization system on the∞-category of (∞, k)-categories:

Theorem 5.3.7. Let k ≥ 0 and n ≥ −2.
(1) The pair (n-surjective functors, n-faithful functors) defines a factorization system on the ∞-

category Cat(∞,k) of (∞, k)-categories.
(2) This factorization system is compatible with the Cartesian symmetric monoidal structure on

Cat(∞,k).
(3) This factorization system is of small generation. More specifically,

(a) if n+ 2 ≤ k then it is generated by the set {∂ci → ci}n+2≤i≤k, and
(b) if n+ 2 ≥ k then it is generated by the single morphism {Σk[Sn−k+1]→ Σk[pt] =: ck}.

Proof. In the base case that k = 0, this factorization system is recorded as [Lur09, Ex. 5.2.8.16], which
is easy to check is compatible with the Cartesian symmetric monoidal structure and generated by the
single morphism {Sn+1 → pt}. So, let us assume that k > 0.

If n = −2, then this is the trivial factorization system (Cat(∞,k),Cat
≃
(∞,k)) (as in Example B.1.7).

Moreover, it is trivially compatible with the Cartesian symmetric monoidal structure, and it is also
clearly generated by the set {∂ci → ci}0≤i≤k: by induction (and the universal property of the categorical
suspension functor Σ[−]), a morphism C → D is right orthogonal to this set if and only if it is an
equivalence on maximal subgroupoids and on hom-(∞, k − 1)-categories.

From here, in the case that n > −2 (and k > 0) the claim follows by applying Theorem B.4.1
inductively (varying both k and n simultaneously). □
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Definition 5.3.8. Given a morphism C F−→ D in Cat(∞,k), we refer to its unique factorization28

guaranteed by the (n-surjective, n-faithful) factorization system as its n-factorization, and denote it
by

Factn(F ) := Fact(n-surjective, n-faithful)(F ) ∈ Cat(∞,k).

Warning 5.3.9. Recall from [GK17, Prop. 4.6] that any presentable∞-category admits a factorization
system of (n-connected, n-truncated) morphisms. We warn the reader that for any k ≥ 1 and any n >
−2, the (n-surjective, n-faithful) factorization system on Cat(∞,k) of Theorem 5.3.7 does not coincide
with this (n-connected, n-truncated) factorization system induced from presentability of Cat(∞,k). This
can already be seen in the case that k = 1: A functor C → D of (∞, 1)-categories is n-truncated if
and only if it is so on spaces of objects and morphisms.29 Indeed, we have the diagram of irreversible
implications

equivalence monomorphism

(−2)-truncated (−1)-truncated 0-truncated 1-truncated · · ·

(−2)-faithful (−1)-faithful 0-faithful 1-faithful · · ·

equivalence fully faithful faithful

for morphisms in Cat(∞,1). For example, a (−1)-truncated functor of (∞, 1)-categories, i.e. a monomor-
phism in Cat(∞,1), is a functor F : C → D which for any two objects c, c′ ∈ C induces a (−1)-truncated
map HomC(c, c

′) ↪→ HomD(Fc, Fc
′) which restricts to an equivalence between the full subspaces of

isomorphisms Homι0C(c, c
′) → Homι0D(Fc, Fc

′). In particular, any (−1)-faithful, i.e. fully faithful,
functor is (−1)-truncated, and any (−1)-truncated functor is 0-faithful, but neither of these implica-
tions is reversible. In particular, a 0-faithful functor F : C → D does not necessarily exhibit C as a
subcategory of D in the sense of Appendix A.2.2.

Homwise iterating these observations, a similar diagram applies for (∞, k)-categories with k+1 rows
corresponding to the enrichment-depth at which functors between higher hom-categories are required
to be truncated rather than faithful.

Observation 5.3.10. Fix any j ≥ k ≥ 0 and n ≥ −2. By the description of the generators in

Theorem 5.3.7.(3), and their truncations in Observation 5.1.7, we see that the inclusion Cat(∞,k)

ij
↪−→

Cat(∞,j) preserves and detects the (n-surjective, n-faithful) factorization system.30 In particular, a
map of spaces f : X → Y is n-connected (or n-truncated) if and only if it is n-surjective (or n-faithful)
as a map of (∞, k)-categories for any k ≥ 0.

It follows that n-factorizations in Cat(∞,k) remain so in Cat(∞,j). It also follows that the left adjoint

Cat(∞,j)
|−|k−−−→ Cat(∞,k) preserves the notion of n-surjectivity and that the right adjoint Cat(∞,j)

ιk−→
Cat(∞,k) preserves the notion of n-faithfulness.

In fact, the maximal sub-(∞, k)-category functor Cat(∞,j)
ιk−→ Cat(∞,k) also preserves n-surjectivity

provided n lies outside of the interval [k, j):

28This is the unique (∞, k)-category equipped with a factorization C → Factn(F ) → D of F via an n-surjective

functor followed by an n-faithful functor (see Observation B.1.10 and Notation B.1.11).
29For general k, a morphism is n-truncated if and only if it is so on spaces of i-morphisms for all 0 ≤ i ≤ k.
30Using the notation of Definition B.1.5, this is to say that the diagram Cat(∞,0)

i1−→ Cat(∞,1)
i2−→ · · · lies in

Ĉat
f.s.,L,R
∞ when we equip all of these ∞-categories with their (n-surjective, n-faithful) factorization systems.
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Lemma 5.3.11. For j ≥ k ≥ 0 and either n ≥ j or k > n ≥ −2, the maximal sub-(∞, k)-category
functor ιk : Cat(∞,j)

ιk−→ Cat(∞,k) preserves n-surjective functors.

Proof. The case n = −2 is trivial; we henceforth assume n ≥ −1. Similarly, the case j = k is trivial.
It suffices to prove the statement for j = k+1, the general case follows from the observation that ιk =
ιkιk+1 · · · ιj−1. Thus we need to prove that if k ≥ 0 and k ̸= n ≥ −1, then ιk : Cat(∞,k+1) → Cat(∞,k)

preserves n-surjective functors. We prove this statement by induction on k ≥ 0:
For the basecase k = 0, and hence 0 ̸= n ≥ −1, we show that ι0 : Cat(∞,1) → Cat(∞,0) = S preserves

n-surjective functors. Consider an n-surjective functor F : C → D between (∞, 1)-categories. We claim
that ι0F : ι0C → ι0D is n-connected. For n = −1 this follows since if F is surjective on objects, then
ι0F is surjective on π0 and hence (−1)-connected. For the remaining cases n ≥ 1, it suffices to show
that ι0F induces (n − 1)-connected maps on hom-spaces. Let c, d ∈ C and consider the commuting
diagram of spaces

Homι0C(c, d) Homι0D(Fc, Fd)

HomC(c, d) HomD(Fc, Fd).

ι0F

F

By assumption, the bottom horizontal map is (n − 1) ≥ 0-connected. Since the vertical maps are
inclusions of components, to show that the top horizontal map is (n − 1) ≥ 0-connected, it suffices
to show that the top horizontal map is surjective on π0. Given any β ∈ Homι0D(Fc, Fd), i.e. an
isomorphism between Fc and Fd in D, let α ∈ HomC(c, d) be a lift of β in C. We claim that α is an
isomorphism: let β−1 ∈ Homι0D(Fd, Fc) be an inverse of β and α ∈ HomC(d, c) a lift of β−1. Then
α◦α and α◦α are in the same component of HomC(c, c) and HomC(d, d) as the respective identities idc
and idd as F is ≥ 1-connected and hence induces bijections on the sets of components of all hom-spaces.
Therefore, α is an inverse of α and thus α lifts to Homι0C(c, d).

For the induction step, let k ≥ 1 and hence k ̸= n ≥ −1. Given an n-surjective functor F : C → D
in Cat(∞,k+1), the functor ιkF is surjective on objects since F is. For objects c, d ∈ C, note that the
component (ιkF )c,d : HomιkC(c, d) → HomιkD(ιkFc, ιkFd) agrees with the functor ιk−1(Fc,d) which is
(n− 1)-surjective by induction. □

Remark 5.3.12. The statement of Lemma 5.3.11 is false when j > n ≥ k. For example, let A be the
free (∞, 1)-category generated by two objects a and b, a morphism f : a→ b and a morphism g : b→ a.
Then, the unique functor F : A → pt is 0-surjective, but ι0F : ι0A = S0 → pt is not 0-connected.

Corollary 5.3.13. Given j ≥ k ≥ 0 and either n ≥ j or k > n ≥ −2, and F : A → B in Cat(∞,j).

Then, the maximal sub-(∞, k)-category functor ιk : Cat(∞,j)
ιk−→ Cat(∞,k) preserves n-factorizations.

That is, if Factn(F ) is the factorization of F with respect to the (n-surjective, n-faithful) factorization
system, then the induced factorization ιkA → ιkFactn(F )→ ιkB realizes ιkFactn(F ) as the factorization
Factn(ιkF ) of ιkF with respect to the (n-surjective, n-faithful) factorization system on Cat(∞,k).

Proof. The statement follows from the fact that ιk preserves both n-surjectivity (Lemma 5.3.11) and
n-faithfulness (Observation 5.3.10). □

Throughout, we will also repeatedly use the following simple observation:

Lemma 5.3.14. For j > k ≥ 0 and C ∈ Cat(∞,j), the inclusion of the maximal sub-(∞, k)-category
ιkC → C is (k − 1)-surjective.

Proof. Factoring ιkC → ιk+1C → . . . → ιj−1C → C, it suffices to prove the case j = k + 1. For
k = 0 and C ∈ Cat(∞,1), the functor ι0C → C is surjective on objects, i.e. (−1)-surjective. For
k ≥ 1 and C ∈ Cat(∞,k+1), the functor ιkC → C is surjective on objects and by induction homwise
(k − 2)-surjective, hence ιkC → C is (k − 1)-surjective. □
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We end this subsection with the following useful proposition, generalizing [SY19, Prop. 4.2.8].

Proposition 5.3.15. Let k ≥ 0 and m ≥ n ≥ −2. Given a commuting (solid) square in Cat(∞,k)

(5.2)

A C

B D
F G

where F is n-surjective and G is m-faithful. Then the space of (dashed) lifts is (m− n− 2)-truncated.

Proof. We induct on k ≥ 0. The base case k = 0 is proven in [SY19, Prop. 4.2.8]. For k > 0, fix a
functor G : C → D which is m-faithful and let S be the class of morphisms F in Cat(∞,k) for which
the space of lifts (5.2) against G is (m − n − 2)-truncated. We will now prove that S contains the
n-surjective functors. Since S contains equivalences, and is closed under composition, small colimits
and cobase change, it forms a saturated class of morphisms (Definition B.1.13). By Proposition B.1.14,
to show that S contains all n-surjective morphisms, it suffices to show that it contains the generators
of the left class; i.e. by Theorem 5.3.7.(3) the functors {∂ci → ci}n+2≤i≤k for n+2 < k and the functor
Σk[Sn−k+1]→ ck for n+ 2 ≥ k.

We first consider the case that n + 2 ≥ k, where we need to show that a commuting diagram of
(∞, k)-categories

(5.3)

Σk[Sn−k+1] C

Σk[pt] D.
G

has (m− n− 2)-truncated space of lifts. Let α denote the composite ∂ck = Σk[∅]→ Σk[Sn−k+1]→ C,
picking out a pair of parallel (k − 1)-morphisms. By Observation 5.1.9, the space of lifts of (5.3) is
equivalent to the space of lift of the following diagram in spaces

(5.4)

Sn−k+1 kHomC(α)

pt kHomD(Gα).

(n−k)-conn. (m−k)-trunc.

By definition of faithfulness, if G is m-faithful, then the right vertical map is (m−k)-truncated for any
α : ∂ck → C. Hence, it follows from [SY19, Prop. 4.2.8] that the space of lifts of (5.4) is (m− n− 2)-
truncated.

Now we consider the case n+2 < k, where we need to show that ∂ci → ci is in S for n+2 ≤ i ≤ k. For
i = k, since ∂ck → ck is (k−2)-surjective and (k−2)+2 ≥ k, it follows from the previous case that the
space of lifts of ∂ck → ck against G is (m−(k−2)−2)-truncated, and since (m−(k−2)−2) ≤ (m−n−2)
also (m − n − 2)-truncated. It remains to show that ∂ci → ci is in S for n + 2 ≤ i < k. As both ∂ci
and ci are (∞, k − 1)-categories, by the (ik, ιk−1) adjunction, the two space of lifts are equivalent:

(5.5)





∂cn+2 C

cn+2 D
G




≃





∂cn+2 ιk−1C

cn+2 ιk−1D
ιk−1G




.

Since ιk−1G is a n-faithful functor between (∞, k − 1)-categories by Observation 5.3.10, by induction
the space of lifts is (m− n− 2)-truncated. □



A BRAIDED MONOIDAL (∞, 2)-CATEGORY OF SOERGEL BIMODULES 65

5.4. Homotopy (n, k)-categories of (∞, k)-categories. In this subsection, we define the homotopy
(n, k)-category of an (∞, k)-category.
Definition 5.4.1. For any k ≥ 0 and any n ≥ −2, an (n, k)-category is an (∞, k)-category C such
that the functor C → pt is n-faithful. We write Cat(n,k) ⊆ Cat(∞,k) for the full subcategory on the
(n, k)-categories.

Remark 5.4.2. Unwinding Definition 5.4.1 gives an alternative inductive description: For k > 0 and
n > −2, an (∞, k)-category C is an (n, k)-category if and only if its hom-(∞, k − 1)-categories are in
fact (n− 1, k − 1)-categories. In particular, an (n, n)-category is indeed an ∞-category that is weakly
enriched in (n− 1, n− 1)-categories (as proposed in Appendix A.1), with a (0, 0)-category being a set
(i.e. a 0-truncated space).31

Remark 5.4.3. For n ≥ k, it is immediate from [GH15, Thm. 6.1.8] that Cat(n,k) coincides with
[GH15, Def. 6.1.1]. In particular, Cat(n,k) is the ∞-category obtained from applying Cat[−] (n − k)
times to the ∞-category of (n− k)-truncated spaces S≤n−k, with its Cartesian presentably symmetric
monoidal structure.

Example 5.4.4. We list a few edge cases of Definitions 5.4.1.

(1) For any k ≥ 0, there is only one (−2, k)-category, namely pt.
(2) For any k ≥ 0, there are only two (−1, k)-categories, namely ∅ and pt.
(3) For any k > 0, a (0, k)-category is precisely a partially ordered set (i.e. an∞-category enriched

in (−1)-truncated spaces). In particular, the inclusions Cat(0,1) ↪→ Cat(0,2) ↪→ · · · are all
equivalences.

(4) More generally, for any k > n ≥ 0, an (n, k)-category is precisely an (n + 1, n + 1)-category
whose spaces of (n + 1)-morphisms are all either empty or contractible. In particular, the
inclusions Cat(n,n+1) ↪→ Cat(n,n+2) ↪→ · · · are all equivalences.

(5) Taking k = 1, for any n ≥ 1, an (n, 1)-category is precisely an (∞, 1)-category whose hom-
spaces are (n− 1)-truncated.

Definition 5.4.5. By Observation B.1.20.(1), the fully faithful inclusion Cat(n,k) ↪→ Cat(∞,k) admits
a left adjoint

(5.6) Cat(∞,k) Cat(n,k)
τn
⊥

given by the formula τn(C) := Factn(C → pt).32 This left adjoint τn is symmetric monoidal as it
preserves products.

Example 5.4.6. Unpacked, the functor τn can be described as follows, depending on n ≥ −2 and
k ≥ 0.

(1) For any (∞, k)-category C, we have τ−2C = pt.
(2) For any (∞, k)-category C, we have τ−1C = ∅ if C is empty and τ−1C = pt otherwise.
(3) For n ≥ k ≥ 0 and any (∞, k)-category C, τnC ∈ Cat(n,k) is obtained by (n− k)-truncating its

k-morphism spaces (Notation 5.1.8), and univalently completing the result. In particular, for
an (∞, 1)-category C, τ1C is its ordinary homotopy category.

31At first glance, it may be confusing that e.g. for an (∞, 2)-category C to be a (2, 2)-category we only need to impose

a condition on its spaces of 2-morphisms: one might wonder whether e.g. its space of 1-morphisms HomCat(∞,2)
(c1, C)

might have higher homotopy groups. But actually, path spaces of the latter contribute path components of the former.

(Indeed, this same reasoning shows that the space of objects of a (1, 1)-category must in fact be a 1-groupoid.)
32Beware that (despite our usage of the letter τ) this is not the abstractly-defined “n-truncation” functor in Cat(∞,k)

(see Warning 5.3.9)
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(4) For k ≥ 1 and any (∞, k)-category C, τ0C ∈ Cat(0,k) ≃ Cat(0,1) is the posetification of C,
obtained by applying τ−1 to its hom-(∞, k − 1)-categories.

(5) For k > n ≥ 0 and any (∞, k)-category C, τnC ∈ Cat(n,k) ≃ Cat(n,n+1) is obtained by k-
homwise applying τ−1 (and univalently completing the result).

In general, the hom-categories in τnC can be computed by applying τn−1 to hom-categories of C:
Lemma 5.4.7. For any n ≥ −2, k ≥ 0 and any (∞, k)-category C and objects c, c′ ∈ C, the adjunc-
tion (5.6) induces an equivalence

τn−1HomC(c, c
′)

≃−→ HomτnC(c, c
′).

Proof. Consider the factorization C → τnC → pt into an n-surjective followed by an n-faithful functor.
Since n-faithfulness/surjectivity implies homwise (n − 1)-faithfulness/surjectivity, it follows that for
any c, c′ ∈ C, in the induced factorization on hom-(∞, k − 1)-categories

HomC(c, c
′)→ HomτnC(c, c

′)→ pt

the first functor is (n − 1)-surjective and the second functor is (n − 1)-faithful, hence exhibiting
HomτnC(c, c

′) as the unique factorization τn−1HomC(c, c
′). □

Observation 5.4.8. Using Observation B.1.3, for any k ≥ 0 and n,m ≥ −2, one can deduce that
the functor τn : Cat(∞,k) → Cat(n,k) preserves m-faithful functors since its right adjoint preserves
m-surjective functors.

For any j > k ≥ 0 and n ≥ −2, since the inclusion ij : Cat(∞,k) ↪→ Cat(∞,j) preserves n-factorizations
(see Observation 5.3.10), the diagram

Cat(∞,j) Cat(n,j)

Cat(∞,k) Cat(n,k)

τn

τn

ij ij

commutes. By adjunction, this induces for any (∞, j)-category C a canonical functor of (n, k)-categories
(5.7) τnιkC → ιkτnC.
Lemma 5.4.9. For any j > k ≥ 0 and any n ≥ j or k > n ≥ −2, and an (∞, j)-category C, the
canonical functor (5.7) is an equivalence.

Proof. This follows immediately from applying Corollary 5.3.13 to the factorization C → τnC → pt. □

Remark 5.4.10. Lemma 5.4.9 does not hold for j > n ≥ k: For instance, for j = 1 and n = k = 0 and
an (∞, 1)-category C, the space τ0ι0C is the set of isomorphism classes of objects of C. On the other
hand, ι0τ0C is the set of connected components of C, i.e the quotient of the set of isomorphism classes
of object by the equivalence relation that c ∼ d if there exists a zigzag of morphisms between c and d.

Now we are ready to define the n-homotopy category functor:

Definition 5.4.11. For n, k ≥ 0, define the homotopy n-category functor

hn : Cat(∞,k) → Cat(n,n)

to be Cat(∞,k)
τn−→ Cat(n,k) ↪→ Cat(n,n) when n ≥ k and to be Cat(∞,k)

ιn−→ Cat(∞,n)
τn−→ Cat(n,n) when

n < k. Note that hn is symmetric monoidal as ιn and τn are symmetric monoidal. For C ∈ Cat(∞,k),
we call hnC the homotopy n-category of C.
Remark 5.4.12. Since ι is a right adjoint and τ is a left adjoint, there are no natural maps in either
direction between C and hnC.
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Example 5.4.13. The homotopy n-category functor hn takes a space X to its n-truncation τnX.
Given a (∞, 1)-category C, h0C = τ0ι0C is the set of isomorphism classes of objects, and h1C is its
homotopy 1-category [Lur09, Def. 1.1.3.2]. For n ≥ 1, hn = τn is equivalent to the ‘n-homotopy
category’ of [SY20, Def. 2.9]. Of particular relevance to this paper will be the case of (∞, 2)-categories
C where h1C = τ1ι1C.
Observation 5.4.14. Fix n,m ≥ 0, since both ιn and τn preserves m-faithfulness by Observa-
tion 5.3.10 and Observation 5.4.8, hn also preserves m-faithfulness.

5.5. Faithful functors and homotopy categories. For an (∞, 1)-category C, the ∞-category of
full subcategories of C is equivalent to the poset of subsets of the set h0(C) of isomorphism classes of
objects in C, or equivalently to the ∞-category of ‘full subcategories’ of the set h0(C). In the next
two subsections, we generalize this to arbitrary n, k ≥ 0 and characterizes (n − 1)-faithful functors of
(∞, k)-categories into some (∞, k)-category C in terms of (n− 1)-faithful functors of (n, n)-categories
into the homotopy n-category hnC.
Notation 5.5.1. For n, k ≥ 0, we let Arn(Cat(∞,k)) ⊆ Ar(Cat(∞,k)) denote the full subcategory
of the arrow category of Cat(∞,k) on the n-faithful functors. Moreover, for D ∈ Cat(∞,k), we write
(Cat(∞,k))/nD ⊆ (Cat(∞,k))/D for the full subcategory of the over-category on the n-faithful functors

C → D. In particular, (Cat(∞,k))/npt
= Cat(n,k).

The goal of the next subsection §5.6 will be to prove the following theorem.

Theorem 5.5.2. Fix n, k ≥ 0. The commuting square of ∞-categories

(5.8)

Ar(n−1)(Cat(∞,k)) Cat(∞,k)

Ar(n−1)(Cat(n,n)) Cat(n,n)

t

hn hn

t

is a pullback square. Note the left map exists by Observation 5.4.14.

Before proving Theorem 5.5.2 in §5.6, we record a few corollaries. First, taking fibers at a D ∈
Cat(∞,k) immediately leads to the following corollary:

Corollary 5.5.3. Let n, k ≥ 0 and D an (∞, k)-category. Then, the n-homotopy category functor hn
induces an equivalence of ∞-categories:

hn : (Cat(∞,k))/(n−1)D → (Cat(n,n))/(n−1)hnD
.

Hence, Corollary 5.5.3 is indeed a generalization of the statement at the beginning of this subsection:
The ∞-category of (n− 1)-faithful functors into D is equivalent to the ∞-category of (n− 1)-faithful
functors into hnD.

For later use, we need an analogous statement for O-monoidal ∞-categories for a given ∞-operad
O. For any small ∞-operad O (see Appendix A.8 and §7 for definitions and notation), we can extend
this to a statement about categories of O-algebras:
Definition 5.5.4. Let O be an ∞-operad and k, n ≥ −2. An O-monoidal functor F : C → D of
O-monoidal (∞, k)-categories (i.e. a morphism of O-algebras in the Cartesian symmetric monoidal
category Cat(∞,k)) is called n-surjective/n-faithful if for every color X ∈ O, the underlying functor
FX : CX → DX is n-surjective/n-faithful.

Corollary 5.5.5. Let n, k ≥ 0, O an ∞-operad, and D an O-monoidal (∞, k)-category. Then the
n-homotopy category functor hn induces an equivalence of ∞-categories:

(AlgO(Cat(∞,k)))/(n−1)D
hn−−→ (AlgO(Cat(n,n)))/(n−1)hnD

.
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Proof. The full subcategory Ar(n−1)(Cat(∞,k)) ⊆ Ar(Cat(∞,k)) is closed under products and hence
defines a Cartesian symmetric monoidal subcategory. Since all functors in (5.8) preserve products, the
pullback square is a pullback square of Cartesian symmetric monoidal ∞-categories and hence induces
a pullback square of ∞-categories:

(5.9)

AlgO

(
Ar(n−1)(Cat(∞,k))

)
AlgO

(
Cat(∞,k)

)

AlgO

(
Ar(n−1)(Cat(n,n))

)
AlgO

(
Cat(n,n)

)

t

hn hn

t

Under the equivalence of∞-categories Ar(AlgO(Cat(∞,k))) ≃ AlgO(Ar(Cat(∞,k))), the full subcategory

Ar(n−1)(AlgO(Cat(∞,k))) on the O-monoidal functors F whose underlying functors FX are (n − 1)-

faithful becomes identified with AlgO

(
Ar(n−1)(Cat(∞,k))

)
. Hence, the pullback square (5.9) is equiv-

alent to the square

Ar(n−1)
(
AlgO

(
Cat(∞,k)

))
AlgO

(
Cat(∞,k)

)

Ar(n−1)
(
AlgO

(
Cat(n,n)

))
AlgO

(
Cat(n,n)

)

t

hn hn

t

and taking fibers at the O-algebra D ∈ AlgO
(
Cat(∞,k)

)
induces the desired equivalence. □

We record a further straight-forward consequence:

Corollary 5.5.6. Let k, n ≥ 0 and let F : C → D be an (n − 1)-faithful functor between (∞, k)-
categories. Then, for every X ∈ Cat(∞,k), the square

(5.10)

HomCat(∞,k)
(X , C) HomCat(∞,k)

(X ,D)

HomCat(n,n)
(hnX , hnC) HomCat(n,n)

(hnX , hnD)

F◦−

hn hn

hnF◦−

is a pullback square of spaces.
Equivalently, F is a Cartesian morphism for the functor hn : Cat(∞,k) → Cat(n,n).

Proof. For any pair of objects in Ar(n−1)(Cat(∞,k)), the pullback square (5.8) of ∞-categories induces
a pullback square between the respective hom-spaces. In particular, for the pair (idX : X → X ) and

(F : C → D) of objects in Ar(n−1)(Cat(∞,k)), we note that

HomAr(Cat(∞,k))(idX , F ) ≃ HomCat(∞,k)
(X , C) HomAr(Cat(n,n))(idhkX , hkF ) ≃ HomCat(n,n)

(hkX , hkC),
and hence that the resulting pullback square of hom-spaces precisely results in the square (5.10). □

Taking fibers at some G ∈ HomCat(∞,k)
(X ,D), Corollary 5.5.6 immediately implies the following

corollary which will play a key role in the proof of our main theorem:

Corollary 5.5.7. Let k, n ≥ 0, let F : C → D and G : X → D be functors between (∞, k)-categories
and assume that F is (n− 1)-faithful. Then, the map of spaces

Hom(Cat(∞,k))/D (X , C)→ Hom(Cat(n,n))/hnD (hnX , hnC)
is an equivalence.
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5.6. Proof of Theorem 5.5.2. This subsection is devoted to the proof of Theorem 5.5.2.
We first consider the special case that k = n. This will be a consequence of the following observation

relating faithfulness and homotopy categories, well known in the case k = n = 1 of (∞, 1)-categories.
Proposition 5.6.1. Let n ≥ k ≥ 0 and F : C → D be a functor between (∞, k)-categories which is
(n− 1)-faithful. Then, the following commutative diagram is a pullback square in Cat(∞,k):

(5.11)

C D

hnC = τnC hnD = τnD

Proof. Since the inclusion Cat(∞,k) ↪→ Cat(∞,n) preserves pullbacks, and preserves n-factorizations and
hence commutes with τn, it suffices to prove the statement for n = k. We induct on n ≥ 0. The base
case n = 0 is immediate. For general n, we prove that the underlying diagram of spaces

(5.12)

ι0C ι0D

ι0τnC ι0τnD

is a pullback square and that for each c, c′ ∈ C the induced square of (∞, n− 1)-categories

HomC(c, c
′) HomD(Fc, Fc

′)

HomτnC(c, c
′) HomτnD(Fc, Fc

′)

is a pullback square. Using Lemma 5.4.7, the latter square is a pullback square by induction.
For the former square (5.12), the top horizontal map is (n − 1)-truncated by Observation 5.3.10.

By Lemma 5.4.9, the bottom horizontal map is equivalent to τnι0C → τnι0D, i.e. to the map between
the n-truncations of the spaces ι0C and ι0D. Since τn preserves truncatedness, the bottom horizontal
map is also (n − 1)-truncated. On the other hand, for any space X, the truncation map X → τnX
is n-connected, and hence so are the vertical maps. Now Proposition 5.2.5 implies that (5.12) is a
pullback square. □

We use Proposition 5.6.1 to prove the n ≥ k ≥ 0 case of Theorem 5.5.2.

Lemma 5.6.2. For n ≥ k ≥ 0, the following commuting square of ∞-categories is a pullback square

(5.13)

Ar(n−1)(Cat(∞,k)) Cat(∞,k)

Ar(n−1)(Cat(n,k)) Cat(n,k).

t

τn τn

t

Proof. We show that the functor

(5.14) Ar(n−1)(Cat(∞,k))→ Cat(∞,k) ×Cat(n,k)
Ar(n−1)(Cat(n,k))

is surjective and fully faithful.
Surjectivity amounts to the following: For any (∞, k)-category D equipped with a (n − 1)-faithful

functor C′ → τnD from an (n, k)-category C′, there exists an (∞, k)-category C and a (n − 1)-faithful
functor C → D which is sent to C′ → τnD under τn.
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Define C to be the pullback in Cat(∞,k)

C D

C′ τnD.

(n−1)-faithful.

(n−1)-faithful.

⌟

Since the right class of a factorization system is preserved under pullback, and since C′ → τnD is
(n − 1)-faithful, so is its pullback C → D. We will now prove by induction on n ≥ 0 that the functor
τnC → C′ adjunct to C → C′ is an equivalence, proving surjectivity of (5.14). The base case n = 0 is
immediate. In general, we will show that τnC → C′ is surjective on objects and fully faithful. Since
D → τnD is surjective on object (in fact (n−1)-surjective), the pullback C → C′ is surjective on objects.
Since C → C′ factors as C → τnC → C′, it follows that also τnC → C′ is surjective on objects. Fully
faithfulness of τnC → C′ follows by induction using Lemma 5.4.7.

We now prove that (5.14) induces an equivalence on the hom-space between any pair of objects

{C1 → D1}, {C2 → D2} ∈ Ar(n−1)(Cat(∞,k)), and hence that (5.14) is fully faithful. Unwinding the
hom-spaces in the relevant arrow categories, this is equivalent to the statement that for any fixed
functor G : D1 → D2 of (∞, k)-categories, the map of spaces of dashed lifts





C1 C2

D1 D2
G





τn−→





τnC1 τnC2

τnD1 τnD2.
τnG





is an equivalence. This follows immediately from Proposition 5.6.1. □

To generalize Lemma 5.6.2 to also allow for the case k > n, we will use the following lemma.

Lemma 5.6.3. For all k > n ≥ 0, the commutative square of ∞-categories

(5.15)

Ar(n−1)(Cat(∞,k)) Cat(∞,k)

Ar(n−1)(Cat(∞,n)) Cat(∞,n)

t

ιn ιn

t

is a pullback square.

Proof. We show that the functor

(5.16) Ar(n−1)(Cat(∞,k))→ Cat(∞,k) ×Cat(∞,n)
Ar(n−1)(Cat(∞,n))

is surjective and fully faithful.
Surjectivity amounts to the following: For any (∞, k)-category D equipped with an (n− 1)-faithful

functor C′ → ιnD from an (∞, n)-category C′, there exits an (∞, k)-category C with an (n− 1)-faithful
functor C → D which under ιn gets mapped to the original functor C′ → D.

Define C := Factn−1(C′ → ιnD → D) as the factorization with respect to the ((n − 1)-surjective,
(n − 1)-faithful) factorization system in Cat(∞,k), and hence equipped with morphisms C′ → C → D
where the former is (n− 1)-surjective and the latter is (n− 1)-faithful. To conclude, we show that the
map C′ ≃ ιnC′ → ιnC is an equivalence, and hence that ιn(C → D) is equivalent to C′ → ιnD. Consider
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the following commutative diagram:

C′

ιnC ιnD

C D.

(n−1)-faithful.

(n−
1)-surj.

(n−1)-faithful.

(n−1)-faithful.

The bottom horizontal and leftmost diagonal functor are surjective/faithful as indicate by the definition
of C. The top-most diagonal functor is (n − 1)-faithful by assumption. The top horizontal functor is
(n− 1)-faithful since ιn preserves faithfulness by Observation 5.3.10. It then follows from Lemma 5.3.5
that the functor C′ → ιnC is (n−1)-faithful. Since C′ → C is (n−1)-surjective and since ιn : Cat(∞,k) →
Cat(∞,n) preserves (n−1)-surjective functors by Lemma 5.3.11 it follows that C′ ≃ ιnC′ → ιnC is (n−1)-
surjective. Hence, C′ → ιnC is (n− 1)-faithful and (n− 1)-surjective and hence an equivalence.

We now prove that (5.16) induces an equivalence on the hom-space between any pair of objects

{C1 → D1}, {C2 → D2} ∈ Ar(n−1)(Cat(∞,k)), and hence that (5.14) is fully faithful. Unwinding the
hom-spaces in the relevant arrow ∞-categories, this is equivalent to the statement that for any fixed
D1 → D2 and any fixed dashed lift as shown in the first diagram in (5.17), the space of dashed lifts as
shown in the commuting square in the second diagram in (5.17) is contractible.

(5.17)

ιnC1 ιnC2

ιnD1 ιnD2

,

ιnC1 ιnC2

C1 C2

D1 D2.

By Lemma 5.3.14, ιnC1 → C1 is (n−1)-surjective, and C2 → D2 is (n−1)-faithful by assumption, hence
the space of lift is contractible since (n − 1)-surjective/(n − 1)-faithful functors form a factorization
system on Cat(∞,k). □

We can combine Lemma 5.6.2 and Lemma 5.6.3 into a proof of Theorem 5.5.2.

Proof of Theorem 5.5.2. The case n ≥ k is Lemma 5.6.2. For k > n, decompose the square as

Ar(n−1)(Cat(∞,k)) Cat(∞,k)

Ar(n−1)(Cat(∞,n)) Cat(∞,n)

Ar(n−1)(Cat(n,n)) Cat(n,n).

t

ιn ιn

t

τn τn

t

By Lemmas 5.6.2 and 5.6.3 the bottom and top squares are pullbacks, respectively. □
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6. The monoidal (∞, 2)-category of chain complexes of Soergel bimodules

Throughout this section, we let k be a Q-algebra.33 Recall from Definition 4.3.1 the presentably sym-
metric monoidal ∞-categories addBZ

k := Fun(BZ, addk) and stBZ
k := Fun(BZ, stk) of small k-linear34

additive, resp. stable, idempotent complete ∞-categories equipped with a Z-action. These categories
will always be understood as equipped with the Day convolution symmetric monoidal structure.

Notation 6.0.1. Throughout this section, we will use the following terminology:

(1) We refer to objects and morphisms of Cat[SetBZ] as ordinary 1-categories with local shifts and
shift-preserving functors.

(2) We refer to objects and morphisms of Cat[addBZ
k ] as k-linear (∞, 2)-categories with local shifts

and shift-preserving k-linear functors.
(3) We refer to objects and morphisms of Cat[stBZ

k ] as k-linear stable (∞, 2)-categories with local
shifts and shift-preserving k-linear exact functors.

(4) Similarly, we refer to objects and morphisms in AlgE1
of the∞-categories in (1)–(3) as monoidal

ordinary categories with local shifts, etc.

Unpacked, an ordinary category with local shifts is a 1-category C equipped with, for every c, c′ ∈ C
a Z-action on the hom-set HomC(c, c

′), denoted by [n] : HomC(c, c
′)→ HomC(c, c

′) for n ∈ Z, which is
compatible with composition in the sense that the following diagram commutes:

HomC(c, c
′)×HomC(c

′, c′′) HomC(c, c
′′)

HomC(c, c
′)×HomC(c

′, c′′) HomC(c, c
′′)

[n]×[m]

◦

[n+m]

◦

Similarly, a k-linear (stable) (∞, 2)-category with local shifts is an (∞, 2)-category whose hom-categories
are additive (stable), k-linear, and have a homotopy coherent Z-action which is compatible with com-
position.

Example 6.0.2. Most of our constructions in this section are built on the symmetric monoidal k-linear
(2, 2)-category with local shifts

Morflat,gr−proj(modZk) ∈ CAlg(Ĉat[addBZ
k ])

from Definition 4.5.7. By Corollary 4.5.8.(1), its objects are Z-graded flat k-algebras, and its k-linear
additive, idempotent-complete hom-categories between two such algebras A and B is given by the full
subcategory of the 1-category AgrbmodB of (ordinary) Z-graded A–B-bimodules on those bimodules
which are graded-compact-projective (Definition 3.6.8), as a right B-module. The homwise Z-action is
given by shifting the grading degree of these bimodules.

We warn the reader that Morflat,gr−proj(modZk) is a locally small, but not a small (the flat Z-graded
k-algebras do not form a small set) (∞, 2)-category. Since all algebras of relevance to this paper are
graded polynomial algebras, it will be convenient to restrict to the small full subcategory on those:

Notation 6.0.3. Let Morpoly,gr−proj(modZk) ⊆ Morflat,gr−proj(modZk) denote the small full subcategory
on the graded polynomial algebras k[x1, . . . , xn] for n ≥ 0, with all xi in degree 2. (Graded polynomial
algebras are flat, see Example 4.5.4, this hence indeed defines a full subcategory.) Since tensor products

33All of the results in this section which do not specifically refer to the categories of Bott-Samelson and Soergel

bimodules apply generally to arbitrary connective ring spectra k ∈ CAlg(Sp≥0), and to arbitrary commutative monoids

Z ∈ CAlg(S) in place of Z.
34In this section, and the rest of the paper, we abuse notation and let k denote both the commutative ring, and the

induced commutative ring spectrum Hk and simply write addk and stk instead of addHk and stHk as in §4.
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of polynomial algebras are polynomial algebras, this is in fact a symmetric monoidal subcategory and
hence defines an object

Morpoly,gr−proj(modZk) ∈ CAlg(Cat[addBZ
k ]).

The goal of this section is to first define BSbim as a monoidal (2, 2)-category35 and then Sbim
as k-linear monoidal (2, 2)-category with local shifts, both equipped with faithful monoidal functors

to Morpoly,gr−proj(modZk), i.e. functors which induces fully-faithful inclusions on hom-categories (see
Notation 5.3.3).

The following warning makes our construction of a monoidal structure on BSbim and Sbim from
the monoidal structure of Morpoly,gr−proj(modZk) somewhat more subtle than one might think.

Warning 6.0.4. We warn the reader that one should not think of BSbim and Sbim as sub-(2, 2)-

categories of Morpoly,gr−proj(modZk). Indeed, BSbim and Sbim do not contain all 1-equivalences be-

tween their objects that exists in Morpoly,gr−proj(modZk). Hence, the faithful functors BSbim →
Morpoly,gr−proj(modZk) and Sbim → Morpoly,gr−proj(modZk) are not monomorphisms in Cat(∞,2); see

also Warning 5.3.9. In particular, for an (∞, 2)-functor X → Morpoly,gr−proj(modZk), it is not merely a
property to factor through BSbim or Sbim but additional data.

6.1. The monoidal (2, 2)-category of Bott-Samelson bimodules. Recall that to define a full
subcategory of an (∞, 1)-category A, it suffices to specify a subset of the set h0A of isomorphism
classes of objects of A. Similarly, it follows from Corollary 5.5.3 that to define an (∞, 2)-category C
together with a faithful functor C → A into a fixed (∞, 2)-category A, it suffices to define an ordinary
1-category h1C together with an ordinary faithful functor h1C → h1A into the homotopy 1-category of
A, see Definition 5.4.11. We will use this to define our monoidal (2, 2)-category BSbim together with

its faithful functor to Morpoly,gr−proj(modZk).

Observation 6.1.1. Following Corollary 4.5.8.(1), h1Morpoly,gr−proj(modZk) is the (small) ordinary
symmetric-monoidal 1-category whose objects are given by graded polynomial algberas, and whose
morphisms are given by isomorphism classes of ordinary graded bimodules which are graded-compact-
projective as right modules. Furthermore, composition is given by relative tensor product and the
symmetric monoidal structure is given by tensoring over k.

Proposition 6.1.2. The ordinary monoidal 1-category h1BSbim from Definition 2.3.1 admits a faithful
monoidal functor

h1BSbim→ h1Morpoly,gr−proj(modZk).

Proof. Recall from Definition 2.3.1 that h1BSbim has objects n ∈ N0 and endo-hom-sets defined as
the subset h0BSbimn ⊆ h0(RngrbmodRn

) of isomorphism classes of graded bimodules for the graded
polynomial algebra Rn = k[x1, . . . , xn] with xi in degree 2 on the Bott-Samelson bimodules. The

desired functor to h1Morpoly,gr−proj(modZk) follows immediately from this description: It sends an
object n ∈ N0 of h1BSbim to the graded polynomial algebra Rn = k[x1, . . . , xn] and is defined on

hom-sets as the full inclusion h0BSbimn ↪→ h0(Rn
grbmodgr−cp

Rn
). Since Bott-Samelson bimodules are

graded-compact-projective as right (and left) modules by Remark 2.1.3, and since the composition and

monoidal structure in h1Morpoly,gr−proj(modZk) are defined by the relative (underived) tensor product
and the tensor product ⊗k, this indeed defines a faithful monoidal functor. □

The following corollary justifies the notation h1BSbim from §2.

Corollary 6.1.3. There exists a unique monoidal (2, 2)-category

BSbim ∈ AlgE1
(Cat(∞,2))

35As a subcategory of Sbim, BSbim then inherits its local Z-action from Sbim.
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equipped with a faithful monoidal functor BSbim → Morpoly,gr−proj(modZk) which agrees on homotopy

categories with the monoidal functor h1BSbim→ h1Morpoly,gr−proj(modZk) from Observation 6.1.1.

Proof. Recall Corollary 5.5.5, that for any small monoidal (∞, 2)-category D ∈ AlgE1
(Cat(∞,2)), taking

the homotopy 1-category induces an equivalence

h1 : AlgE1
(Cat(∞,2))/f D → AlgE1

(Cat(1,1))/f h1D

between the full subcategories of AlgE1
(Cat(∞,2))/D and AlgE1

(Cat(1,1))/h1D on the faithful functors.

Applying this to D = Morpoly,gr−proj(modZk), the monoidal (2, 2)-category BSbim is the unique pre-

image of h1BSbim → h1Morpoly,gr−proj(modZk). Since any (∞, 2)-category with a faithful functor to a
(2, 2)-category is again a (2, 2)-category, it follows that BSbim is a (2, 2)-category. □

Definition 6.1.4. We refer to the monoidal (2, 2)-category BSbim from Corollary 6.1.3 as the Bott-
Samelson (2, 2)-category .

Observation 6.1.5. By construction, the isomorphism classes of objects of BSbim are in bijection
with the natural numbers n ∈ N0. For every n ∈ N0 we now fix a representing object in BSbim in that
isomorphism class and simply denote it by n. For n,m ∈ BSbim, the hom-category in BSbim is given
by

HomBSbim(n,m) =

{
0 n ̸= m
BSBimn n = m

,

where BSbimn is the category from Definition 2.1.2. The monoidal functor BSbim→ Morpoly,gr−proj(modZk)
sends objects n to the polynomial algebra Rn and is given on hom-categories by the evident full inclu-
sion of BSBimn into the category of graded Rn–Rn-bimodules that are graded-compact-projective as
right Rn-modules.

6.2. The monoidal (2, 2)-category of Soergel bimodules. Having defined BSbim together with

its inclusion BSbim → Morpoly,gr−proj(modZk), we will now define Sbim as the homwise completion of

BSbim under Z-shifts, direct sums and splitting of idempotents inside of Morpoly,gr−proj(modZk).
To formally implement this, we need to construct a factorization system on the presentably sym-

metric monoidal ∞-category addBZ
k of additive k-linear ∞-categories with a Z-action, equipped with

the Day convolution monoidal structure, constructed in Section 4.3.

Definition 6.2.1. We will use the following terminology:

(1) A functor F : C → D between idempotent-complete ∞-categories is called dominant if every
object in D is a retract of an object in the image of F .

(2) A morphism in addBZ
k is dominant, resp. fully faithful, if its underlying functor is.

Proposition 6.2.2. The (dominant, fully faithful)-functors define a factorization system on addBZ
k

which is of small generation and compatible with the symmetric monoidal structure.

Proof. Consider the sequence of morphisms in CAlg(PrL)

Cat∞ → Cat⊔∞ → Cat⊔,idem
∞ → ModCProjk(Cat

⊔,idem
∞ ) ≃ addk

left adjoint to the respective forgetful functors (see Proposition 3.1.11 for the first two functors, and
Observation 4.2.4 for the latter one). We will successively lift the (surjective-on-objects, fully faithful)-
factorization system on Cat∞ to addk.

Step 1: We first show that the (surjective-on-objects, fully faithful)-functors define a factorization
system on Cat⊔∞ which is of small generation and compatible with the symmetric monoidal structure.
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Given a morphism F : C → D in Cat⊔∞, i.e. a functor between∞-categories with finite coproducts that
preserves finite coproducts, we consider its (surjective-on-objects, fully faithful) factorization in Cat∞

C D

Im(F )

F

F̃ ι ,

where F̃ is surjective on objects and ι is fully faithful. Using Observation B.2.1 and Lemma B.2.2 we
can deduce that the factorization system on Cat∞ restricts to one on Cat⊔∞ which is of small generation
and compatible with the symmetric monoidal structure, provided we can show that Im(F ) admits finite

coproducts and that F̃ and ι preserve them. In fact, since ι is fully faithful, it is enough to prove that
Im(F ) is closed under finite coproducts in D. To this end, let S be a finite set and I : S → Im(F ) a

diagram. Since F̃ : C → Im(F ) is surjective on objects, we can lift I to a functor Ĩ : S → C which has

a colimit colim Ĩ ∈ C by assumption. Since F preserves coproducts and using the factorization, the

coproduct colim ι ◦ I agrees with F (colim Ĩ) and hence is in the image of F , as required.

Step 2: To lift from Cat⊔∞ to Cat⊔,idem
∞ , observe that the symmetric monoidal left adjoint (−)idem :

Cat⊔∞ → Cat⊔,idem
∞ is a reflective localization, i.e. that the right adjoint is fully faithful. We observe

the following:

(1) A morphism in Cat⊔,idem
∞ is of the form (F )idem for a fully faithful morphism F in Cat⊔∞ if and

only if it is fully faithful.
(2) A morphism in Cat⊔,idem

∞ is of the form (F )idem for a surjective-on-objects morphism F in
Cat⊔∞ if and only if it is dominant.

Since the class of dominant functors is stable under retracts in Cat⊔,idem
∞ , it therefore follows from

Lemma B.2.5 that the (surjective-on-objects, fully faithful)-factorization system on Cat⊔∞ induces the

(dominant, fully faithful)-factorization system on Cat⊔,idem
∞ , and that this factorization system is of

small generation and compatible with the monoidal structure on Cat⊔,idem
∞ .

Step 3: Since

Cat⊔,idem
∞ ModCProjk(Cat

⊔,idem
∞ ) ≃ addk⊥

is a monadic adjunction, whose underlying monad CProjk⊗− : Cat⊔,idem
∞ → Cat⊔,idem

∞ preserves colim-
its (and in particular geometric realizations), and preserves dominant functors (since ⊗ is compatible

with the (dominant, fully faithful)-factorization system on Cat⊔,idem
∞ , as follows from Step 2), it follows

fromLemma B.2.7 that the (dominant, fully faithful) functors form a factorization system on addk
which is of small generation and compatible with its symmetric monoidal structure.

Step 4: Lastly, by Lemma B.2.3, the (dominant, fully faithful)-factorization system induces one
on Fun(BZ, addk) which is of small generation and compatible with the Day convolution symmetric
monoidal structure. □

Notation 6.2.3. We will use the following terminology:

(1) A morphism F : C → D in Cat[addBZ
k ] is called faithful if its underlying (∞, 2)-functor is

(see Notation 5.3.3). It is called surjective-on-objects-and-dominant-on-1-morphisms if it is
surjective on objects and if for each c, c′ ∈ C, the induced additive functor HomC(c, c

′) →
HomC(Fc, Fc

′) is dominant.

(2) A morphism in AlgE1
(Cat[addBZ

k ]) is called faithful or surjective-on-objects-and-dominant-on-

1-morphisms if the underlying morphism in Cat[addBZ
k ] is.

Applying the factorization system from Proposition 6.2.2 homwise leads to the following corollary.
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Corollary 6.2.4. The (surjective-on-objects-and-dominant-on-1-morphisms, faithful)-functors define

factorization systems on Cat[addBZ
k ] and AlgE1

(Cat[addBZ
k ]), respectively, which are of small generation

and compatible with the symmetric monoidal structure.

Proof. This follows immediately from applying Theorem B.4.1 and then Theorem B.3.1 to the factor-
ization system of Proposition 6.2.2. □

The forgetful functor addk → Cat∞ has a symmetric monoidal left adjoint ‘linearization functor’

Link : Cat∞ → addk,

which is the composite of symmetric monoidal left adjoints

(6.1) Cat∞
(−)⊔,idem

−−−−−−→ Cat⊔,idem
∞

CProjk⊗−−−−−−−−→ ModCProjk(Cat
⊔,idem
∞ ) ≃ addk,

where (−)⊔,idem freely adjoints finite coproducts and splittings of idempotents (see Proposition 3.1.11)
and CProjk ⊗ − constructs free CProjk-modules (see Proposition 3.1.8). This induces a symmetric

monoidal left adjoint of the forgetful functor addBZ
k → CatBZ

∞

Fun(BZ,Link(−)) : CatBZ
∞ → addBZ

k ,

which we will also denote by Link(−) : CatBZ
∞ → addBZ

k . Unpacking Observation 3.5.13, the forgetful

functor CatBZ
∞ → Cat∞ (i.e. the functor ev∗ : Fun(BZ,Cat∞)→ Cat∞) has a left adjoint

−× Z : Cat∞ → CatBZ
∞

which sends an ∞-category C to the ∞-category C × Z with free Z-action, and which is symmetric
monoidal with respect to the Day convolution structure on CatBZ

∞ .
Combining these left adjoints, we obtain a symmetric monoidal left adjoint

(6.2) Link(−× Z) : Cat∞ → addBZ
k .

Applying Link(− × Z) homwise, this induces by Appendix A.10 and Appendix A.8.11 symmetric
monoidal left adjoints

(6.3) LinZk,loc := Cat[Link(−× Z)] : Cat(∞,2) = Cat[Cat∞]→ Cat[addBZ
k ]

and (abusing notation)

(6.4) LinZk,loc := AlgE1
(Cat[Link(−× Z)]) : AlgE1

(Cat(∞,2))→ AlgE1
(Cat[addBZ

k ])

of the respective forgetful functors.

Proposition 6.2.5. The functor BSbim→ Morpoly,gr−proj(modZk) of monoidal (∞, 2)-categories from

Corollary 6.1.3 factors through a monoidal addBZ
k -enriched functor

LinZk,loc(BSbim)→ Morpoly,gr−proj(modZk).

Proof. Since Morpoly,gr−proj(modZk) is an object in AlgE1
(Cat[addBZ

k ]), the statement immediately fol-
lows from the adjunction (6.4). □

Explicitly, LinZk,loc(BSbim) has objects natural numbers and additive k-linear hom-categories with
Z-action given by the k-linearization Link(BSbimn×Z) of the 1-category BSbimn×Z with free Z-action.
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Definition 6.2.6. Define the monoidal k-linear (2,2)-category with local shifts Sbim ∈ AlgE1
(Cat[addBZ

k ]),
the Soergel (2, 2)-category , as the unique factorization

LinZk,loc(BSbim) Morpoly,gr−proj(modZk)

Sbim
surjective−on−objects

−and−dominant−on−1−morphisms
faithful

of LinZk,loc(BSbim) → Morpoly,gr−proj(modZk) with respect to the (surjective-on-objects-and-dominant-

on-morphisms, faithful)-factorization system on AlgE1
(Cat[addBZ

k ]).

We denote the composite monoidal shift-preserving functor BSbim→ LinZk,loc(BSbim)→ Sbim by

(6.5) ι : BSbim→ Sbim.

Composing with the monoidal (∞, 2)-functor BSbim→ LinZk,loc(BSbim) (i.e. the unit of the adjunc-
tion (6.4)), we can summarize the categories and functors defined so far thus:

Corollary 6.2.7. The above defined functors assemble into a commuting diagram of monoidal (2, 2)-
functors

BSbim Morpoly,gr−proj(modZk)

Sbim

ι
,

where the top and right diagonal functors are faithful and the right diagonal functor is shift-preserving
and k-linear.

Remark 6.2.8. Intuitively, Sbim is the smallest locally k-linear additive and idempotent-complete
‘sub’-(∞, 2)-category (mind Warning 6.0.4) of Morpoly,gr−proj(modZk) that is closed under the homwise

Z-action and contains BSbim → Morpoly,gr−proj(modZk). Indeed, it follows from the definition that

Sbim together with its faithful monoidal addBZ
k -enriched functor Sbim → Morpoly,gr−proj(modZk) is

initial amongst factorizations of the monoidal (∞, 2)-functor BSbim→ Morpoly,gr−proj(modZk) through

faithful monoidal addBZ
k -enriched functors. More formally, it is the initial object of the pullback of the

following span of ∞-categories:
(
AlgE1

(
Cat(∞,2)

)
/Morpoly,gr−proj(modZ

k)

)
(BSbim→Morpoly,gr−proj(modZ

k))/

AlgE1

(
Cat[addBZ

k ]
)
/fMorpoly,gr−proj(modZ

k)
AlgE1

(
Cat(∞,2)

)
/Morpoly,gr−proj(modZ

k)

6.3. The Soergel (2, 2)-category agrees with its classical variant. We now explain how the
monoidal (2, 2)-category Sbim is indeed just a homwise additive and idempotent-completion of BSbim.
We first record the following useful observation about the adjunction

Cat∞ addBZ
k

Link(−×Z)
⊥

forget
.

Lemma 6.3.1. Let F : C → D be a functor of (∞, 1)-categories, where C ∈ Cat∞ and D ∈ addBZ
k .

Then the following properties of F are equivalent:

(1) Its adjunct Link(C × Z)→ D is dominant.
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(2) Every object of D is a retract of a finite coproduct of shifts (under the Z-action) of objects in
the image of F .

Proof. The tensor unit of Cat⊔,idem
∞ is the category Setfin of finite sets, and since CProjk ∈ CAlg(Cat⊔,idem

∞ ),

the unit induces a finite coproduct preserving functor Setfin → CProjk which sends a finite set X to
the coproduct ⊔Xk and is therefore dominant by Lemma 3.5.7.(1). Hence, since the tensor product

in Cat⊔,idem
∞ of dominant functors is again dominant (since its (dominant, fully faithful)-factorization

system is compatible with its monoidal structure, as follows from the proof of Proposition 6.2.2), it

follows that for any A ∈ Cat⊔,idem
∞ , the unit A ≃ Setfin ⊗A → CProjk ⊗A of the adjunction between

Cat⊔,idem
∞ and addk is dominant. In particular, it immediately follows that for any B ∈ addk, a functor

A → B in Cat⊔,idem
∞ is dominant if and only if its adjunct (drawn horizontally) is:

A

CProjk ⊗A B

Hence, a functor F as in the statement of the lemma is dominant, if and only if the functor (C ×
Z)⊔,idem → D is, equivalently if every object of D is a retract of a finite coproduct of objects in the
image of C × Z, i.e. of objects which are Z-shifts of objects in the image of C. □

For the following we recall from Section 2.1 the notation Rn := k[x1, . . . , xn] for the graded polyno-
mial algebra over k in n ∈ N0 variables, each of degree two.

Proposition 6.3.2. The functor ι : BSbim → Sbim is surjective on objects. For objects n ̸= m ∈
BSbim, the hom-category HomSbim(ιn, ιm) is the zero category, and for n = m it is the smallest
additive and idempotent-complete full subcategory of the ordinary additive category

RngrbmodRn

of graded Rn-bimodules, which contains the full subcategory BSbimn and is closed under the grading-
shift Z-action.

Proof. Since LinZk,loc(−) is defined by applying Link(−× Z) homwise, the functor

α : BSbim→ LinZk,loc(BSbim)

is the identity on objects and hence the composite ι : BSbim → LinZk,loc(BSbim) → Sbim is surjective
on objects. The induced functor on hom-categories between n,m ∈ BSbim therefore factors as follows
in addBZ

k :

Link(BSbim(n,m)× Z) =: LinZk,loc(BSbim)(αn, αm)→ Sbim(ιn, ιm)→ Rn
grbmodRm

The first functor is dominant (since LinZk,loc(BSbim) → Sbim is dominant on morphisms) and the

second functor is fully faithful (since Sbim→ Morpoly,gr−proj(modZk) is faithful).

It follows from fully faithfulness of the second functor (and the fact that it is a morphism in addBZ
k ),

that Sbim(ιn, ιm) is a full additive and idempotent-complete subcategory of Rn
grbmodRm

which is
closed under grading shifts. By Lemma 6.3.1, dominance of the first functor implies that every object of
this full subcategory is a retract of a finite coproduct of shifts of objects in the image of BSbim(n,m) ↪→
RngrbmodRm

. □

Observation 6.3.3. As there are no non-zero morphisms between n ̸= m, it follows immediately from
Proposition 6.3.2 that the monoidal (2, 2)-functor ι : BSbim → Sbim induces a bijection on the set of
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isomorphism classes of objects. For objects n,m ∈ Sbim, the additive k-linear hom-category is given
by

HomSbim(n,m) ≃
{

0 n ̸= m
Sbimn n = m

,

where Sbimn is the ordinary k-linear additive category from Definition 2.1.4 with Z-action by grading
shift. The monoidal shift-preserving k-linear functor Sbim→ Morpoly,gr−proj(modZk) sends objects n to
the polynomial algebra Rn and is given on hom-categories by the evident full inclusion of Sbimn into
the category of all graded bimodules which are graded-compact-projective as right modules.

It follows from functoriality that the composition of 1-morphisms in HomSbim(n, n) is given by the
relative tensor product − ⊗Rn

− (and hence, that the endomorphism 1-category HomSbim(n, n) is
equivalent to the monoidal category Sbimn as in Definition 2.1.4), and that the monoidal structure of
Sbim is given by −⊗k− (and hence acts by parabolic induction on the hom-categories Sbimn×Sbimm →
Sbimn+m as in Definition 2.1.5, see Remark 2.3.3).

6.4. The monoidal (∞, 2)-category of chain complexes of Soergel bimodules. Recall from Sec-
tions 3.4.2 and 3.4.3 that the forgetful functor st→ add from the presentably symmetric monoidal ∞-
category of small stable∞-categories to that of small additive∞-categories has a symmetric monoidal
left adjoint

Kb : add→ st,

which sends an ordinary additive 1-category A to the ∞-category of bounded chain complexes in A
with chain maps and (higher) chain homotopies between them. By Proposition 4.3.2, this is compatible
with linearity and Z-action and induces a symmetric monoidal left adjoint

Kb : addBZ
k → stBZ

k

of the forgetful functor stBZ
k → addBZ

k . Applying Kb homwise, it follows from Appendix A.10 and
Appendix A.8.11 that we obtain symmetric monoidal left-adjoints of the respective forgetful functors:

Kb
loc := Cat[Kb] : Cat[addBZ

k ]→ Cat[stBZ
k ]

(6.6) Kb
loc : AlgE1

(
Cat[addBZ

k ]
)
→ AlgE1

(
Cat[stBZ

k ]
)
.

Definition 6.4.1. We call the monoidal k-linear stable (∞, 2)-category with local shifts

Kb
loc (Sbim) ∈ AlgE1

(
Cat[stBZ

k ]
)

the chain complex Soergel (∞, 2)-category .
The unit of the adjunction (6.6) is a monoidal addBZ

k -enriched (∞, 2)-functor
(6.7) Sbim→ Kb

loc(Sbim).

Since the functor Kb
loc is defined by applying Kb homwise, we immediately obtain the following

explicit description ofKb
loc(Sbim), which completes the construction ofKb

loc as described in Theorem A:

Proposition 6.4.2. The objects of Kb
loc(Sbim) agree with those of Sbim, while the stable k-linear

hom-categories are given by

HomKb
loc(Sbim)(n,m) =

{
0 n ̸= m
Kb(Sbimn) n = m

,

with Z-action given by internal (i.e. non-homological!) grading shift.
The functor Sbim → Kb

loc(Sbim) from (6.7) sends objects to themselves and is on hom-categories
given by the additive k-linear Z-equivariant functor Sbimn ↪→ Kb(Sbimn) including Soergel bimodules
as chain complexes concentrated in degree zero. In particular, it is faithful as an (∞, 2)-functor.
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Note that while Sbim is a (2, 2)-category, the category Kb
loc(Sbim) is a true (∞, 2)-category with

non-trivial higher cells.
The following makes the connection to Section 2 and justifies the notation h1K

b
loc(Sbim) from there.

Corollary 6.4.3. The homotopy 1-category h1K
b
loc(Sbim) of the monoidal (∞, 2)-category Kb

loc(Sbim)
agrees with the monoidal 1-category h1K

b
loc(Sbim) from Definition 2.3.2.

Moreover, after taking homotopy 1-categories, the monoidal (∞, 2)-functor BSbim → Sbim →
Kb

loc(Sbim) becomes the ordinary monoidal 1-functor

h1BSbim→ h1K
b
loc(Sbim)

from (2.13).

6.5. The fiber functor on Kb
loc(Sbim). We now construct the monoidal shift-preserving k-linear

exact functor Kb
loc(Sbim)→ stBZ

k .
Recall from Corollary 4.5.8.(2) the (large) derived Morita category

DMorflat,gr−perf(modZk) ∈ CAlg(Ĉat[stBZ
k ]).

Its objects can be understood as ordinary Z-graded flat k-algebras, and its k-linear stable, idempotent-
complete hom-category between two objects A and B is given by the full subcategory of the derived∞-
category D(AgrbmodB) of the abelian category AgrbmodB of graded A–B bimodules on those objects
which are graded-perfect as right B-modules, i.e. are quasi-isomorphic to bounded chain complexes of
graded-compact-projective B-modules.

As before, it suffices to consider the small full subcategory of polynomial algebras:

Notation 6.5.1. Let DMorpoly,gr−perf(modZk) ⊆ DMorflat,gr−perf(modZk) denote the small full subcat-
egory on the graded polynomial algebras k[x1, . . . , xn] for n ≥ 0, with all xi in degree 2. (Graded
polynomial algebras are flat, see Example 4.5.4, this hence indeed defines a full subcategory.) Since
tensor products of polynomial algebras are polynomial algebras, this is in fact a symmetric monoidal
subcategory and hence defines an object

DMorpoly,gr−perf(modZk) ∈ CAlg(Cat[stBZ
k ]).

In Corollary 4.5.8.(3) we constructed a symmetric monoidal addBZ
k -enriched functor

Morflat,gr−proj(modZk)→ DMorflat,gr−perf(modZk)

which sends flat graded algebras to themselves and includes graded bimodules as the discrete objects
into the derived∞-category of graded bimodules, and hence restricts to a symmetric monoidal addBZ

k -
enriched functor

Morpoly,gr−proj(modZk)→ DMorpoly,gr−perf(modZk).

By Definition 6.2.6, there is also a faithful monoidal shift-preserving k-linear functor Sbim →
Morpoly,gr−proj(modZk).

Proposition 6.5.2. The monoidal addBZ
k -enriched functor

Sbim→ Morpoly,gr−proj(modZk)→ DMorpoly,gr−perf(modZk)

factors through a monoidal stBZ
k -enriched functor

(6.8) Hloc : K
b
loc(Sbim)→ DMorpoly,gr−perf(modZk).

Proof. This follows immediately from the adjunction

AlgE1
(Cat[addBZ

k ]) AlgE1
(Cat[stBZ

k ]).
Kb

loc(−)

⊥
forget

□
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Observation 6.5.3. Unpacked, the functor Hloc : K
b
loc(Sbim) → DMorpoly,gr−perf(modZk) sends an

object n to the polynomial algebra Rn := k[x1, . . . , xn], and a bounded chain complex of Soergel
bimodules to the induced object in D(RngrbmodRn

)gr−perf , i.e. the chain complex considered up to
quasi-isomorphism. Thinking of this as a homotopy coherent version of ‘taking homology’ motivates
the notation Hloc.

The unpacking of the functor Hloc from Proposition 6.5.2 in Observation 6.5.3 immediately implies
the following:

Corollary 6.5.4. The induced functor on homotopy categories

h1Hloc : h1K
b
loc(Sbim)→ h1DMorpoly,gr−perf(modZk)

agrees with the functor h1Hloc from (2.14).

Notation 6.5.5. Recall from Observation 4.5.10 that DMorflat,gr−perf(modZk) has a symmetric monoidal
fully faithful stBZ

k -enriched functor

DMorflat,gr−perf(modZk) ↪→ stBZ
k .

We will abuse notation and also denote by Hloc the monoidal stBZ
k -enriched composite

(6.9) Hloc : K
b
loc(Sbim)→ DMorpoly,gr−perf(modZk) ↪→ DMorflat,gr−perf(modZk) ↪→ stBZ

k .

The composite sends a graded k-algebra A to the stable ∞-category of bounded chain complexes of
graded-compact-projective right A-modules, with Z-action given by the internal (i.e. non-homological)
grading shift.

Lemma 6.5.6. The composite addBZ
k -enriched functor Sbim→ Kb

loc(Sbim)→ DMorpoly,gr−perf(modZk)

and its further composite Sbim→ Kb
loc(Sbim)→ DMorpoly,gr−perf(modZk) ↪→ stBZ

k are faithful.

Proof. We show that the former functor is faithful, the latter functor is a composite with a fully
faithful functor and hence also faithful. By construction, the former functor factors as Sbim →
Morpoly,gr−proj(modZk) → DMorpoly,gr−perf(modZk), the first of which is faithful by Corollary 6.2.7,
and the second is faithful since the induced map on hom-categories between two polynomial algebras
A and B is given by the full inclusion.

Agrbmodgr−cp
B ↪→ D(AgrbmodB)

gr−perf

by Corollary 4.5.8.(3). □
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7. Prebraidings and braidings via ∞-operads

In this section, we introduce the operadic machinery we use in our construction of the braiding on
Kb

loc(Sbim). Throughout, we use Lurie’s theory of∞-operads developed in [Lur17, § 2]. Appendix A.8
contains an introduction to our terminology and notation. We remind the reader that for an∞-operad
O we denote its ∞-category of operators by O⊗ → Fin∗, and its underlying ∞-category by O and
if it is clear from context sometimes also just by O. Given another ∞-operad P, we denote the ∞-
operad of O-algebras in P by AlgO(P) with underlying ∞-category AlgO(P) — if clear from context

sometimes also just denoted by AlgO(P) — and space of objects AlgO(P)
≃ = HomOp(O,P). Using

the left adjoint Cat∞ → Op of the underlying-category functor (−) : Op → Cat∞, any ∞-category C
can be considered as an ∞-operad with empty non-1-ary mapping spaces. Abusing notation, we will
also denote this free ∞-operad on C by C.

7.1. Recollections on unital ∞-operads. We recall some facts about ∞-operads from [Lur17]
and [SY19] which we will use throughout.

Definition 7.1.1. An ∞-operad O is unital if for every color X ∈ O, the 0-ary mapping space
MulO(∅, X) is contractible. We let Opun denote the full subcategory of the ∞-category of ∞-operads
Op on the unital ∞-operads.

Example 7.1.2. For all n ≥ 0, the ∞-operads En are unital.

For∞-operads O and P, recall that the∞-category AlgO(P) of O-algebras in P admits a pointwise

operad structure constructed in [Lur17, Ex. 3.2.4.4] and henceforth denoted AlgO(P).
Lemma 7.1.3. Let O be an ∞-operad and consider the operad maps O → O⊗E0 and AlgE0

(O)→ O
induced from the operad map Triv→ E0. Then the following hold:

(1) The∞-operad O⊗E0 is unital. Moreover, O is unital if and only if the operad map O → O⊗E0

is an isomorphism.
(2) The ∞-operad AlgE0

(O) is unital. Moreover, O is unital if and only if the operad map
AlgE0

(O)→ O is an isomorphism.

Proof. Part (1) follows directly from [Lur17, Prop. 2.3.1.9]. For part (2), note that for an ∞-operad
P, the fiber of HomOp(E0,P) → HomOp(Triv,P) = P≃ at a color X ∈ P is the 0-ary mapping
space MulP(∅, X) and hence that P is unital if and only if HomOp(E0,P) → HomOp(Triv,P) is
an isomorphism. In particular, evaluating at P = AlgE0

(O) for an ∞-operad O, and using that
HomOp(−,AlgE0

(O)) ≃ HomOp(− ⊗ E0,O) and part (1), it follows that AlgE0
(O) is unital. If O

is moreover unital, let Q be a unital ∞-operad and consider the map HomOpun(Q,AlgE0
(O)) →

HomOpun(Q,O) which is equivalent to HomOpun(Q ⊗ E0,O) → HomOpun(Q,O). Since Q is unital,
this is an isomorphism by part (1). This completes the proof of part (2). □

Evaluating Lemma 7.1.3.(1) at O = E0 shows that E0 is a (unital) idempotent in Op (as also follows
from Dunn additivity) with image Opun.

The following is an immediate consequence of Lemma 7.1.3, also see [Lur17, Prop. 2.3.1.9].

Corollary 7.1.4. The full inclusion Opun ↪→ Op has left and right adjoints

Opun Op.

−⊗E0

AlgE0 (−)

⊣
⊣

Most unital ∞-operads appearing in this paper arise from the following observation:
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Example 7.1.5. It follows from Lemma 7.1.3 that for any unital ∞-operad O and ∞-operad P the
operad AlgO(P) ≃ AlgO⊗E0

(P) ≃ AlgE0
(AlgO(P)) is unital. In particular, since En is a unital ∞-

operad for any n ≥ 0, it follows that for any ∞-operad P, the ∞-operads AlgEn
(P) are unital.

Example 7.1.6. The underlying ∞-operad of a symmetric monoidal ∞-category C is unital if and
only if the tensor unit I of C is an initial object. An example of such a symmetric monoidal∞-category
is given by the coCartesian tensor product on an ∞-category with finite coproducts.

The coCartesian monoidal structure on an ∞-category with finite coproducts can be generalized to
a certain coCartesian unital operad structure on any ∞-category:

Example 7.1.7 ([Lur17, § 2.4.3]). For any∞-category C, there is a unital∞-operad C⊔ with underlying
∞-category C and multi-ary mapping spaces

MulC⊔(X1, . . . , Xn;Y ) ≃ HomC(X1, Y )× · · ·HomC(Xn, Y )

These coCartesian operads have the following universal characterization:

Lemma 7.1.8 ([Lur17, Prop. 2.4.3.9, Cor. 2.4.3.11], [SY19, Lem. 2.2.3]). The assignment C 7→ C⊔
induces a fully faithful functor Cat∞ ↪→ Opun which is right adjoint to the underlying-category functor
Opun → Cat∞.

In particular, it follows that the unit of the adjunction is an operad map O → O⊔ which induces
the identity on underlying ∞-categories O → O⊔ ≃ O. Fixing colors X1, . . . , Xn, Y ∈ O, this induces
a map

(7.1) σ : MulO(X1, . . . , Xn;Y )→ HomO(X1, Y )× · · · ×HomO(Xn, Y ).

The components MulO(X1, . . . , Xn;Y ) → HomO(Xi, Y ) of this map may be thought of as inserting
units in all but the i-th slot.

7.2. The operads A2 and T2. For a unital ∞-operad O, we can use the unit-inserting map

σ : MulO(X1, . . . , Xn;Y )→ HomO(X1, Y )× · · · ×HomO(Xn, Y )

from (7.1) to give a quick definition of the well-known notion of a unital A2-algebra, which encodes a
left and right-unital binary multiplication without any associativity requirements:

Definition 7.2.1. A unital A2-algebra in a unital ∞-operad O is given by a color X ∈ O equipped
with an element of the pullback

MulO(X,X;X)×HomO(X,X)×2 {(idX , idX)},
i.e. a 2-ary map µ ∈ MulO(X,X;X) and an identification of its image (µ(1,−), µ(−1)) under
σ : MulO(X,X;X)→ HomO(X,X)×2 with (idX , idX).

A unital A2-algebra in a (not necessarily unital) ∞-operad O is a unital A2-algebra in the unital
∞-operad AlgE0

(O).
Lemma 7.1.3.(2) ensures that Definition 7.2.1 is well-defined for non-unital operads and unambigous

for unital ∞-operads.
We will also be concerned with the following relative version:

Definition 7.2.2. A T2-algebra in a unital operad O is given by a pair of colors X,Y ∈ O equipped
with an element of the pullback

MulO(X,X;Y )×HomO(X,Y )×2 HomO(X,Y ),

i.e. a 2-ary operation µ ∈ MulO(X,X;Y ) and an identification of the 1-ary operations µ(−, 1) and
µ(1,−) in HomO(X,Y ).
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A T2-algebra in a (not necessarily unital) ∞-operad O is a T2-algebra in the unital ∞-operad
AlgE0

(O).

We now construct ∞-operads which corepresent T2 and A2-algebras. For this purpose, for any
n ≥ 0, consider the functor

∇n : Op→ S, O 7→ Hom(Cat∞)/Fin∗

(
[1]

{n+→1+}
−−−−−−→ Fin∗, O⊗ → Fin∗

)
,

which may intuitively be thought of as sending an ∞-operad O to the space of (n+1)-tuples of colors
X1, . . . , Xn, Y ∈ O equipped with an n-ary map µ ∈ MulO(X1, . . . , Xn;Y ).

Lemma 7.2.3. The functor ∇n : Op→ S is corepresented by an ∞-operad, also denoted ∇n.

Proof. Using Lurie’s combinatorial simplicial model category of∞-preoperads [Lur17, § 2.1.4], one can

define the ∞-operad ∇n as a fibrant resolution of the ∞-preoperad [1]
n+→1+−−−−−→ Fin∗. □

For a unital ∞-operad O and a ∇2-algebra (X,Y, Z, µ ∈ MulO(X,Y ;Z)), we may insert units into
µ to extract morphisms X → Z and Y → Z in O, This leads to the following:

Lemma 7.2.4. The ∞-category ∇2 ⊗ E0 underlying the unital ∞-operad ∇2 ⊗E0 is equivalent to the
‘walking span’ {• → • ← •}, i.e. the pushout [1] ⊔[0] [1].

Proof. By adjunction, for any ∞-category C, we have

HomCat∞(∇2 ⊗ E0, C) ≃ HomOpun(∇2 ⊗ E0, C⊔) ≃ HomOp(∇2, C⊔).
The latter space explicitly unpacks to the space of triples X,Y, Z ∈ C with maps X → Y ← Z and
hence HomOp(∇2, C⊔) ≃ HomCat∞({• → • ← •}, C). □

Consider the codiagonal functor {• → • ← •} → {• → •} = [1] which identifies the two morphisms in the
span.

Definition 7.2.5. We define the T2-operad and the A2-operad as the following pushouts of unital
∞-operads:

(7.2)

∇2 ⊗ E0 [1]⊗ E0 E0

∇2 ⊗ E0 T2 A2
⌜ ⌜

The definitions together with Lemma 7.2.4 immediately imply that algebras of the T2- and A2-operad
are T2- and A2-algebras in the sense of Definitions 7.2.2 and 7.2.1.

Corollary 7.2.6. Let O be a (not necessarily unital) ∞-operad.

(1) Given a map of operads [1]⊗ E0 → O, equivalently a map of operads [1]→ AlgE0
(O) specified

by a morphism f : A→ B in AlgE0
(O), the above pushout induces an isomorphism of spaces:

HomOp[1]⊗E0/
(T2,O) ≃ MulAlgE0 (O)(A,A;B)×MulAlgE0 (O)(A;B)2 {(f, f)}.

(2) Given a map of operads E0 → O, equivalently an A ∈ AlgE0
(O), the above pushout induces an

isomorphism of spaces

(7.3) HomOpE0/
(A2,O) ≃ MulAlgE0 (O)(A,A;A)×MulAlgE0 (O)(A;A)2 {(idA, idA)}
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Example 7.2.7. Using Corollary 7.2.6, we may factor the canonical map E0 → E1 through an operad
map A2 → E1 which remembers of an E1-algebra only the binary multiplication and its unitality
structure. This is the first step in the well-known filtration E0 = A1 → A2 → . . . → A∞ = E1 of the
E1-operad by the unital An operads, encoding higher coherent associativity (see [Lur17, § 4.1.4] for a
non-unital version of this filtration in the setting of ∞-operads). In this paper, we will only need the
first stage E0 → A2 → E1.

Notation 7.2.8. For an ∞-operad O and an operad map [1] ⊗ E0 → O corepresenting a morphism
f : A→ B ∈ AlgE0

(O), we write

TO
2 (f) := HomOp[1]⊗E0/

(T2,O) ≃ MulAlgE0 (O)(A,A;B)×MulAlgE0 (O)(A;B)2 {(f, f)}.
for the space of T2-structures on f .

For an ∞-operad O and an operad map E0 → O corepresenting an E0-algebra A in O, we write

AO
2 (A) := HomOpE0/

(A2,O) ≃ MulAlgE0 (O)(A,A;A)×MulAlgE0 (O)(A;A)2 {(idA, idA)}.
for the space of A2-structures on A.

If clear from context, we will often drop the superscript O indicating the ambient ∞-operad and
simply write T2(f) and A2(A).

A straight-forward, but very useful consequence of the definition is that T2-structures transport along
adjunctions: In an adjunction, T2-structures on a morphism f : LA→ B are canonically identified with
T2-structures on its adjunct A→ RB:

Lemma 7.2.9. Let C and D be symmetric monoidal ∞-categories whose monoidal units are initial.
Let

C D.L

R

be an adjunction with (strongly) symmetric monoidal left adjoint L and unit denoted by η : idC ⇒ RL.
Then, the adjunction isomorphism

ψA,B : HomD(LA,B)
R(−)−−−→ HomC(RLA,RB)

−◦ηA−−−→ HomC(A,RB)

induces via the maps from Observation 7.2.10 for every f ∈ HomD(LA,B) an isomorphism

T2(f)
R(−)−−−→ T2(Rf)

−◦ηA−−−→ T2(Rf ◦ ηA) = T2(ψA,B(f)).

Proof. By adjunction and monoidality of L, the horizontal maps in the commuting diagram

HomD(LA
⊗2, B) HomC(A

⊗2, RB)

HomD(LA,B)×2 HomD(A,RB)×2

are isomorphisms and hence so is the induced map between the fibers at {(f, f)} → HomD(LA,B)×2.
□

Observation 7.2.10. The space T2(f) of T2-structures on a given E0-morphism f : A→ B in AlgE0
(O)

is compatible with composition and functorial: Given an operad map F : O → P, applying F induces
a map of spaces

T2(f)
F (−)−−−→ T2(F (f)).

Similarly, any E0-morphism g : B → C in AlgE0
(O) induces evident maps of spaces

(7.4) T2(f)
g◦−−−→ T2(g ◦ f) T2(g)

−◦(f,f)−−−−−→ T2(g ◦ f).
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It will be useful to express this operation in terms of ∞-operads. Let [2] := {0 < 1 < 2} denote
the ∞-category (and the free ∞-operad on that ∞-category) corepresenting a pair of composable
morphisms. Consider the following pushouts of ∞-operads

[1]⊗ E0 T2

[2]⊗ E0 T2 ⊔{0<1} [2]

{0<1}
⌜

[1]⊗ E0 T2

[2]⊗ E0 T2 ⊔{1<2} [2]

{1<2}
⌜

[1]⊗ E0 T2

[2]⊗ E0 T2 ⊔{0<2} [2]

{0<2}
⌜

corepresenting a pair of E0-morphisms A
f−→ B

g−→ C with a T2-structure on f , g or g ◦ f , respectively.
By Yoneda, the maps of spaces constructed above induce operad maps

T2 ⊔{1<2} [2]← T2 ⊔{0<2} [2]→ T2 ⊔{0<1} [2].

7.3. Relative T2-structures. Analogous to (and as we will see later — generalizing) Definition 2.4.5,
we introduce T2-structures relative to a given A2-structure.

As a consequence of Observation 7.2.10, given an E0-morphism f : A → B in an ∞-operad O,
applying (7.4) in the case g = idB , we obtain a map of spaces

A2(B) = T2(idB)
−◦(f,f)−−−−−→ T2(f).

In particular, any A2-structure on B (e.g induced by a genuine E1- or even E∞-structure) induces a
T2-structure on f .

This allows us to introduce the following notion, analogous to Definition 2.4.5.

Definition 7.3.1. Let O be an∞-operad, C an A2-algebra (with A2-structure denoted by α ∈ AO
2 (C))

and let A
f−→ B

g−→ C be morphisms of E0-algebras. We define the space TO
2 (f)/C of T2-structures on

f relative to C as the pullback of the span

{α} → AO
2 (C) = TO

2 (idC)
−◦(g◦f,g◦g)−−−−−−−−→ T2(g ◦ f) g◦−←−− T2(f).

In words, a T2-structure on f relative to C is a T2-structure on f with an identification of the
induced T2-structure on g ◦ f with the T2-structure on g ◦ f induced by the A2-structure α on C.

Recall from §A.8.6 that for an E∞-algebra C in a symmetric monoidal ∞-category V, the over-
∞-category V/C inherits a symmetric monoidal structure so that for any ∞-operad O, there is an
equivalence of ∞-categories AlgO(V/C) ≃ AlgO(V)/C , where for the latter category we consider C
as equipped with the O algebra structure induced by restricting its E∞-structure along the terminal
operad map O → E∞.

Proposition 7.3.2. Let C be an E∞-algebra in a symmetric monoidal ∞-category V, and consider an
E0-algebra morphism in V/C , i.e. equivalently a commuting diagram of E0-algebra morphisms in V as
follows

A B

C

f

.

Then, we have an equivalence of spaces

TV/C

2 (f) ≃ TV
2 (f)/C ,

where for the latter space we consider C as equipped with the A2-structure induced by its E∞-structure.

In words: ‘Absolute’ T2-structures on f in the sense of Notation 7.2.8 seen as a morphism in the
symmetric∞-category V/C coincide with relative T2-structures on f in V in the sense of Definition 7.3.1.
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Proof. By definition, the space TV/C

2 (f) is the fiber of the functor AlgT2
(V/C) → Alg

[1]⊗E0
(V/D) at

f . By the universal property of the symmetric monoidal structure on the over-category V/C , this is
equivalent to the functor AlgT2

(V)/C → Alg
[1]⊗E0

(V)/C . Unwinding the definition of morphisms in

over-categories, this results in the desired equivalence. □

7.4. Centralizers and centers. In light of Theorem 2.6.4, we recall the ∞-categorical theory of
centers and centralizers developed in [Lur17, § 5.3.1] and relate them to T2- and A2-algebras.

Definition 7.4.1 ([Lur17, Def. 5.3.1.2]). Let f : A→ B be a morphism in a monoidal ∞-category C.
A centralizer Z(f) of f is a final object in the ∞-category

CI/ ×CA/
CA//B ,

where the functor CI/ → CA/ sends objects (α : I → X) of CI/ to (A ≃ I ⊗A α⊗idA−−−−→ X ⊗A) ∈ CA/.

Unpacked, a centralizer is an object Z(f) ∈ C equipped with morphisms u : I → Z(f) and ev : Z(f)⊗
A→ B, such that the following diagram commutes

(7.5)

Z(f)⊗A

I ⊗A ≃ A B,

ev

f

u⊗idA

and which is final among such pairs: for any pair of morphisms uX : I → X in C and evX : X ⊗A→ B
making the analog of (7.5) commute, there is a unique morphism φ : X → Z(f) such that

(7.6)

X ⊗A

Z(f)⊗A

I ⊗A ≃ A B.

φ⊗idA
evX

evu⊗idA

uX⊗idA

f

commutes.

Example 7.4.2. Given a functor F : C → D of ∞-categories, by [Lur17, Rmk. 5.3.1.4] the centralizer
in Cat∞ exists and is given by the functor category Fun(C,D) with pointing u : {F} → Fun(C,D) and
ev : Fun(C,D)× C → D given by the evaluation functor.

Notation 7.4.3. Let C be a presentably symmetric monoidal∞-category. For every morphism f : A→
B in the ∞-category AlgEk

(C), the centralizer in AlgEk
(C) exists [Lur17, Cor. 5.3.1.15] and will

henceforth be denoted by Zk(f) ∈ AlgEk
(C).

Example 7.4.4. It is straight-forward to verify that for a monoidal functor F : C → D between
ordinary monoidal 1-categories, the centralizer Z1(F ) ∈ AlgE1

(Cat1) in the (2, 1)-category AlgE1
(Cat1)

of monoidal 1-categories is given by the category from Definition 2.6.1 with unit 1Z(f) : pt → Z1(F )
and ev : Z1(F )× C → D described in Definition 2.6.1 and Definition 2.6.3.

As with ordinary monoidal categories, the case f = idA : A → A is of special interest. For C
a monoidal ∞-category, recall from [Lur17, Def. 4.2.1.13] the ∞-category LMod(C) of left module
objects, whose objects are pairs of an algebra A ∈ AlgE1

(C) and an A-module M ∈ LModA(C), and
the functor LMod(C) → C which sends a pair of an algebra A and a module AM to the underlying
object M .
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Definition 7.4.5 ([Lur17, Def. 5.3.1.6]). Let C be a monoidal ∞-category and M an object of C. A
center Z(M) of M is a final object of the ∞-category LMod(C)×C {M}.

Unpacked, a center Z(M) is an E1-algebra Z(M) in C with a left action on M so that all other left
actions of E1-algebras A on M factor through Z(M).

Proposition 7.4.6 ([Lur17, Prop. 5.3.1.8]). Let M be an object in a monoidal ∞-category C. If
idM : M → M has a centralizer in C, then M has a center. Furthermore, an E1-algebra A with a
left-action on M is a center of M if and only if the underlying maps I → A and A⊗M →M exhibit
A as a centralizer of idM .

Example 7.4.7. Given a small ∞-category C, the center in Cat∞ exists and is given by the monoidal
∞-category Fun(C, C) ∈ AlgE1

(Cat∞).

Notation 7.4.8. Let C be a presentably symmetric monoidal ∞-category. For every A ∈ AlgEk
(C),

the center in AlgEk
(C) exists [Lur17, Cor. 5.3.1.15] and will henceforth be denoted by

Zk(A) ∈ AlgE1
(AlgEk

(C)) = AlgEk+1
(C).

By Proposition 7.4.6, the underlying Ek-algebra of Zk(A) agrees with the centralizer Zk(idA) from
Notation 7.4.3.

Example 7.4.9. For A ∈ AlgE1
(Cat1) an ordinary monoidal 1-category, the center is given by the

Drinfeld center Z1(A) ∈ AlgE2
(Cat1), see [Lur17, Exm. 5.3.1.18].

Notation 7.4.10. Let C be a symmetric monoidal ∞-category whose tensor unit I is initial and let
f : A→ B be a morphism in C whose centralizer Z(f) ∈ C exists. Then, we define ev1A : Z(f)→ B to
be the composite

Z(f) ≃ Z(f)⊗ I idZ(f)⊗1A−−−−−−−→ Z(f)⊗A ev−→ B,

where 1A ∈ HomC(I, A) ≃ ∗. Below, we will mostly use this morphism in the case that C = AlgEk
(A)

for a presentably symmetric monoidal ∞-category A, in which case this defines an Ek-algebra map
Zk(f)→ B for any Ek-algebra map f : A→ B in AlgEk

(A).
The relevance of centralizers to this paper arises from the following proposition:

Proposition 7.4.11. Let C be a symmetric monoidal ∞-category and f : A → B be a morphism in
AlgE0

(C). If the centralizer Z0(f) in AlgE0
(C) exists, then the space

T2(f) := HomOp[1]⊗E0/
(T2, C) ≃ HomAlgE0 (C)

(A⊗A,A)×HomAlgE0 (C)(A,B)2 {(f, f)}
of T2-structures on f is equivalent to the following space of (dashed) lifts in AlgE0

(C):

(7.7)

Z0(f)

A B

ev1A

f

Proof. The space of lifts (7.7) is by definition the fiber of

HomAlgE0 (C)
(A,Z0(f))

ev1A
◦−−−−−−→ HomAlgE0 (C)

(A,B)

at f . By the universal property of the centralizer and since I is initial in AlgE0
(C), the space

HomAlgE0 (C)
(A,Z0(f)) is equivalent to the space HomAlgE0 (C)

(A⊗A,B)×HomAlgE0 (C)(A,B) {f} of lifts

A⊗A B

A

idA⊗1A
f
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in AlgE0
(C), where 1A : I → A denotes the unique morphism in AlgE0

(C). Under this identification,

the map HomAlgE0 (C)
(A,Z0(f))

ev1A
◦−−−−−−→ HomAlgE0 (C)

(A,B) unpacks to the composite

HomAlgE0 (C)
(A⊗A,B)×HomAlgE0 (C)(A,B) {f} → HomAlgE0 (C)

(A⊗A,B)→ HomAlgE0 (C)
(A,B)

of the projection and the precomposition with A ≃ I ⊗ A
1A⊗idA−−−−−→ A ⊗ A. Hence, the fiber of

HomAlgE0 (C)
(A,Z0(f))

ev1A
◦−−−−−−→ HomAlgE0 (C)

(A,B) at f is equivalent to the space

HomAlgE0 (C)
(A⊗A,B)×HomAlgE0 (C)(A,B)×2 {(f, f)} =: T2(f). □

Corollary 7.4.12. Let C be a symmetric monoidal ∞-category and A ∈ AlgE0
(C). If the center

Z0(A) ∈ AlgE1
(C) exists, then the space

A2(A) := HomOpE0/
(A2, C) ≃ HomAlgE0 (C)

(A⊗A,A)×HomAlgE0 (C)(A,B)2 {(idA, idA)}

of A2-structures on A is equivalent to the following space of (dashed) lifts in AlgE0
(C):

(7.8)

Z0(A)

A A

ev1A

idA

Proof. Apply Proposition 7.4.11 for f = idA using that Z0(A) = Z0(idA). □

Observation 7.4.13. Let C be a symmetric monoidal ∞-category, and A ∈ AlgE1
(C). Assume the

center Z0(A) ∈ AlgE1
(C) of the underlying E0-algebra A ∈ AlgE0

(C) exists. Since A has a left action on
itself, the universal property of Z0(A) ∈ AlgE1

(C) induces an E1-homomorphism A→ Z0(A). Moreover,
since the multiplication of A is right unital, it follows that the composite A → Z0(A) → A in C is
isomorphic to idA. Hence, by Corollary 7.4.12, this induces an A2-structure on A. Unpacked, this
A2-structure coincides with the one induced from the operad map A2 → E1 from Example 7.2.7.

By Observation 7.4.13, any E1-structure on an E0-algebra A induces an E1-monoidal section A →
Z(A) of the E0-monoidal Z(A)→ A. We now show that this section and its monoidality can be uniquely
recovered from the E1-structure on A.

Lemma 7.4.14. Let C be a symmetric monoidal ∞-category with initial tensor unit and let X be an
object in C whose center Z(X) ∈ AlgE1

(C) exists. Then, the forgetful functor

(7.9) AlgE1
(C)/Z(X) ×C/X

{idX} → AlgE1
(C)×C {X}

is an equivalence of ∞-categories.

Proof. Since AlgE1
(C)→ C is conservative, the∞-categories in (7.9) are∞-groupoids, and equivalently

given by the fibers of the respective maps of maximal subgroupoids.

For an E1-algebra A in C, it follows from the free-forgetful adjunction C LModA(C) and

initiality of the unit of C that the free A-module AA is initial in LModA(C). This induces a functor
LModA(C) ≃ LModA(C)AA/ → CA/ which sends a left A-module M to the morphism

act1 : A ≃ A⊗ I idA⊗!−−−−→ A⊗M act−−→M.

Applying this functor act1 : LModA(C)→ CA/ fiberwise induces a commuting diagram of spaces
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(7.10)

LMod(C)≃ HomCat∞([1], C)

AlgE1
(C)≃ C≃

act1

s .

By the universal property of the center, the ∞-category AlgE1
(C)/Z(X) is equivalent to the ∞-

category LMod(C) ×C {X}, and hence the space AlgE1
(C)/Z(X) ×C/X

{idX} is equivalent to the fiber

of the top horizontal map in (7.10) at {idX} ∈ HomCat∞([1], C). The functor (7.9) is the induced map
from the fiber of the top horizontal map of (7.10) at idX to the fiber of the bottom horizontal map
of (7.10) at X.

Let HomCat∞([1], C)iso denote the full subspace of HomCat∞([1], C) on the invertible arrows in C.
In particular, the composite HomCat∞([1], C)iso → HomCat∞([1], C) s−→ C≃ is an equivalence. We now
show that the composite map of spaces

(7.11) LMod(C)≃ ×HomCat∞ ([1],C) HomCat∞([1], C)iso → LMod(C)≃ → AlgE1
(C)≃

is an equivalence, which concludes the proof as {idX} ∈ HomCat∞([1], C) is an object of the full subspace
HomCat∞([1], C)iso.

It suffices to verify that all fibers of (7.11) are contractible. By definition, for A ∈ AlgE1
(C) the fiber

is the full subspace of LModA(C)≃ ≃
(
LModA(C)AA/

)≃
on those modulesM for which the induced map

act1 : A→M is an equivalence. But since LModA(C)→ C is conservative, this is the full subcategory
LModA(C)AA/iso on the invertible module functors AA→A M and hence contractible. □

The following corollary finally justifies the presence of T2-structures in this paper:

Corollary 7.4.15. Let F : A → B be an ordinary monoidal functor between ordinary monoidal 1-
categories.

(1) A T2⊗E1-structure on F is a prebraiding on F in the sense of Definition 2.4.1. More precisely,
the space T2(F ) of T2-structures on F is discrete and equivalent to the set PreBraid(F ) of
prebraidings on F defined in Definition 2.4.8.

(2) An A2⊗E1-structure on A is a braiding on the monoidal category A, in the usual 1-categorical
sense. More precisely, the space A2(A) of A2-structures on A is discrete and equivalent to the
set Braid(A) of braidings on A defined in Definition 2.4.8.

Proof. By Proposition 7.4.11, a T2 ⊗ E1-structure on F is a lift in AlgE1
(Cat(1,1)):

Z1(F )

A BF

.

Explicitly, the space of T2 ⊗ E1-structures on F is therefore the 1-groupoid of weak lifts from The-
orem 2.6.4.(3). By Theorem 2.6.4, this is equivalent to the set of prebraidings on F in the sense of
Definition 2.4.8. This completes the proof of part (1). Part (2) follows by applying statement (1) to
the case F = idA. □

The operad map A2 → E1 induces an operad map A2⊗E1 → E1⊗E1 ≃ E2. Hence, any E2-structure
gives rise to an A2⊗E1-structure, but not necessarily vice versa. However, Corollary 7.4.15 shows that
A2 ⊗ E1-structures on 1-categories agree with braided monoidal structures, which are well-known to
coincide with E2-structures on 1-categories. This hints at a certain connectivity of the operad map
A2 ⊗ E1 → E2 which we will study in the next sections.
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7.5. A factorization system on the ∞-category of operads. We introduce the obstruction the-
oretic machinery at the heart of our main theorem.

Definition 7.5.1. For n ≥ −1, we say that a morphism of∞-operads is n-surjective if it is surjective-
on-objects on∞-categories of colors and multi-homwise (n−1)-connected and we say that it is n-faithful
if it is multi-homwise (n − 1)-truncated. We extend this to the case that n = −2 by declaring that
every morphism of ∞-operads is (−2)-surjective, and that a morphism of ∞-operads is (−2)-faithful if
and only if it is an equivalence.

In this section, we will show that the n-faithful and n-surjective operad maps form a factoriza-
tion system on the ∞-category Op of ∞-operads. Recall that by definition, Op is a subcategory of
Cat∞/Fin∗ .

Lemma 7.5.2. A morphism of ∞-operads is n-surjective (resp. n-faithful) if and only if its image

under the composite functor Op ↪→ (Cat∞)/Fin∗

fgt−−→ Cat∞ is so (in the sense of Definition 5.3.1).

Proof. The Segal conditions for∞-operads imply that surjectivity on underlying functors is equivalent
to surjectivity on∞-categories of colors. Moreover, the hom-spaces in an∞-operad are disjoint unions
of (finite) products of multi-hom spaces, and these operations both preserve the class of (n − 1)-
connected (resp. (n − 1)-truncated) morphisms of spaces. (To see that products preserve (n − 1)-
connectedness (resp. (n − 1)-truncatedness), note that this notion is determined fiberwise, that fibers
of a product of morphisms of spaces are computed factorwise since limits commute with limits, and
that (n− 1)-truncated (resp. (n− 1)-connected) spaces are stable under products.) □

Proposition 7.5.3. For any n ≥ −2, the classes of (n-surjective, n-faithful) operad maps defines a
factorization system on the ∞-category Op of ∞-operads.

Proof. By Observation B.1.19.(1), the (n-surjective, n-faithful) factorization system on Cat∞ pulls back
to a factorization system on (Cat∞)/Fin∗ . By Lemma 7.5.2, the classes of our asserted factorization
system are restricted along the inclusion Op ↪→ (Cat∞)/Fin∗ . So, in order to verify that they indeed
define a factorization system on Op, we verify the equivalent conditions of Observation B.2.1.

In order to proceed, we recall that given two ∞-operads O,O′ ∈ Op, a morphism O⊗ → O′⊗ in
(Cat∞)/Fin∗ lies in Op if and only if it is inert-coCartesian (i.e it preserves coCartesian lifts over inert
morphisms in Fin∗). Moreover, we make the following observation for repeated future use.

(∗) Assuming that n ≥ 0, if a morphism in Op is n-surjective then it is surjective on inert-
coCartesian morphisms.

We now turn to condition (1) of Observation B.2.1: given a solid commutative diagram

O1 O3

O2 O4

f g

in Op in which f is n-surjective and g is n-faithful, we must show that the dashed lift in (Cat∞)/Fin∗

(which exists and is unique due to its factorization system) also lies in Op. This is trivial in the case
that n < 0, and in the case that n ≥ 0 this follows immediately from (∗).

We now turn to condition (2) of Observation B.2.1: given any morphism O h−→ O′ in Op, we must
show that the factorization

(7.12)

O⊗ O′⊗

Fact(h)

h

l r
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in (Cat∞)/Fin∗ determined by its (n-surjective, n-faithful) factorization system in fact lies in Op. To

simplify our notation, we write F⊗ := Fact(h). Additionally, we write O⊗ p−→ Fin∗, O′⊗ p′

−→ Fin∗,

and F⊗ q−→ Fin∗ for the indicated functors. We note immediately that the claim is trivial both when

n = −2 (since then F⊗ r−→ O′⊗ is an equivalence) and when n = −1 (since then F⊗ r−→ O′⊗ is the

inclusion of the full suboperad on the colors in the image of O h−→ O′). So, we henceforth assume that
n ≥ 0.

We first show that the functor F⊗ q−→ Fin∗ admits coCartesian lifts of inert morphisms. For this, fix

an object X ∈ F⊗
m+

as well as an inert morphism m+
α−→ n+ in Fin∗. Because the functor O⊗ l−→ F⊗

is surjective, we may choose a lift X̃ ∈ O⊗
m+

of X. Let X̃
α̃−→ Y be a p-coCartesian lift of α. We claim

that X ≃ l(X̃)
l(α̃)−−→ l(Y ) is a q-coCartesian lift of α. To see this, observe first that r(l(α̃)) ≃ h(α̃) is

p′-coCartesian (since h is a morphism in Op). Now, to check that l(α̃) is q-coCartesian, we must check
that the canonical functor F⊗

l(Y )/ → F⊗
/l(X̃)

×(Fin∗)m+/
(Fin∗)n+/ is an equivalence. This fits into a

commutative diagram

O⊗
Y/ F⊗

l(Y )/ O′⊗
rl(Y )/

O⊗
X̃/
×(Fin∗)m+/

(Fin∗)n+/ F⊗
l(X̃)/

×(Fin∗)m+/
(Fin∗)n+/ O′⊗

rl(X̃)/
×(Fin∗)m+/

(Fin∗)n+/

in which the two outer vertical functors are equivalences. We do so by showing that it is fully faithful
and surjective. Since we have assumed that n ≥ 0 (so that n − 1 ≥ −1), the lower left horizontal
functor is surjective, which implies that the middle vertical functor is surjective. To show that it is
fully faithful, given any pair of objects in F⊗

l(Y )/, we may lift them to O⊗
Y/ (again using that n ≥ 0), and

then examine the induced commutative diagram (of the same shape) on hom-spaces. Because its left
and right vertical maps are equivalences, both of its left horizontal maps are (n−1)-connected, and both
of its right horizontal maps are (n− 1)-truncated, its middle vertical map is also an equivalence since
factorizations for the ((n− 1)-connected, (n− 1)-truncated) factorization system on S are unique. So

indeed, the middle vertical functor in the above diagram is an equivalence. This proves that F⊗ q−→ Fin∗
admits coCartesian lifts of inert morphisms, as desired.

The same argument proves the Segal conditions for F⊗, which establishes that F⊗ is indeed an
∞-operad. Moreover, it also proves that l preserves inert-coCartesian morphisms, and in combination
with (∗) we find that r preserves inert-coCartesian morphisms as well. So all in all, the factorization
(7.12) lies in the subcategory Op ⊂ (Cat∞)/Fin∗ , which proves condition (2) of Observation B.2.1. So
indeed, the (n-surjective, n-faithful) factorization system on (Cat∞)/Fin∗ restricts to a factorization
system on this subcategory. □

Warning 7.5.4. Similar to the situation with ∞-categories outlined in Warning 5.3.9, we caution the
reader that the (n-surjective, n-faithful) factorization systems on Op differs from the (n-truncated,
n-connected) factorization systems [GK17, Prop. 4.6] derived from the presentability of Op. We refer
the reader to Warning 5.3.9 for an in-depth comparison which also applies here.

Similar to Proposition 5.3.15, the orthogonality of n-surjective and n-faithful operad maps may be
generalized as follows:
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Corollary 7.5.5. Given a (solid) commuting square in Op

O A

O′ B
F G

where F is n-surjective and G is m-faithful for m ≥ n ≥ −2, the space of (dashed) lifts is (m−n− 2)-
truncated.

Proof. Whenm = n, the statement follows from Proposition 7.5.3. Form > n, consider the commuting
square of spaces:

HomOp(O′,A) HomOp(O,A)×HomOp(O,B) HomOp(O′,B)

Hom/Fin∗(O′⊗,A⊗) Hom/Fin∗(O⊗,A⊗)×Hom/Fin∗ (O⊗,B⊗) Hom/Fin⊗(O′⊗,B⊗)

Hom(O′⊗,A⊗) Hom(O⊗,A⊗)×Hom(O⊗,B⊗) Hom(O′⊗,B⊗)

(−1)-trunc. (−1)-trunc.

⌟

(m−n−2)-trunc.

The space of lifts of our original square is by definition a fiber of the top horizontal map; it hence
suffices to prove that this top horizontal map is (m− n− 2)-truncated.

By Lemma 7.5.2, the (∞, 1)-functor F⊗ : O⊗ → O′⊗ is n-surjective and G⊗ : A⊗ → B⊗ ism-faithful.
Hence, it follows from Proposition 5.3.15 that the bottom horizontal map is (m−n− 2)-truncated. By
definition of the over-category, the bottom square is a pullback square; hence, the middle horizontal
map is (m−n−2)-truncated. Since Op is a subcategory of Cat∞/Fin∗ , the top vertical maps are (−1)-
truncated. . Since m − n − 2 ≥ −1, the composite of the left vertical and the middle horizontal map
is (m− n− 2)-truncated. It follows from Lemma 5.2.4.(2) that the top horizontal map is (m− n− 2)-
truncated. □

7.6. Lifting operadic structure. In Definition 7.5.1 we introduced the notion of n-faithful and n-
surjective morphisms of operads and showed in Proposition 7.5.3 that they form a factorization system
on the ∞-category Op. In this section, we show how this can be used to lift T2 ⊗ E1-structures, i.e.
prebraidings (see Corollary 7.4.15), along certain maps of operads.

Proposition 7.6.1. The following operad maps are 0-surjective:

(1) ∇2 ⊗ E0 ⊗ E1 → ∇2 ⊗ E0 ⊗ E1 ≃ ∇2 ⊗ E1, where ∇2 ⊗ E0 denotes the (free ∞-operad on) the
underlying ∞-category of ∇2 ⊗ E0;

(2) [1]⊗ E1 → T2 ⊗ E1;
(3) E1 → A2 ⊗ E1.

Proof. We first prove part (1). By Lemma 7.2.4, the ∞-category ∇2 ⊗ E0 is equivalent to the walking
span {• → • ← •} and hence the ∞-operad ∇2 ⊗ E0 ⊗ E1 ≃ {• → • ← •} ⊗ E1 corepresents spans of E1-
morphisms.

On underlying categories, the operad map ∇2 ⊗ E0 ⊗ E1 → ∇2 ⊗ E1 is the identity. It therefore
suffices to show that the induced maps on multi-hom spaces are (−1)-connected. Denote the colors of
{• → • ← •}⊗E1 byA,C andB, the morphisms by f ∈ Mul{• → • ← •}⊗E1

(A,C), g ∈ Mul{• → • ← •}⊗E1
(B,C),

the multiplication cells by µA ∈ Mul{• → • ← •}⊗E1
(A,A;A), µB ∈ Mul{• → • ← •}⊗E1

(B,B;B) and µC ∈
Mul{• → • ← •}⊗E1

(C,C;C), the unit cells by 1A ∈ Mul{• → • ← •}⊗E1
(∅, A), 1B ∈ Mul{• → • ← •}⊗E1

(∗, B)
and 1C ∈ Mul{• → • ← •}⊗E1

(∗, C) and use the same notation for their respective images in ∇2⊗E1. The
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only generating cell of∇2⊗E1 that is not evidently in the image of {• → • ← •}⊗E1 is the binary multiplica-
tion stemming from the∇2-operad, which we denote by µ ∈ Mul∇2⊗E1(A,B;C). We will now show that
this additional generator µ is also in the image of π0Mul{• → • ← •}⊗E1

(A,B;C)→ π0Mul∇2⊗E1(A,B;C)
which concludes the proof that {• → • ← •}⊗E1 → ∇2⊗E1 induces (-1)-connected maps on all multi-hom
spaces.

Since µ is a map of E1-algebras, we have a path in Mul∇2⊗E1
(A,A,B,B;C) (where we abuse notation

and write − ◦ (−⊗−) to denote the evident operadic compositions):

µ ◦ (µA ⊗ µB) ≃ µC ◦ (µ⊗ µ).
On the other hand, left and right unitality produce paths in Mul∇2⊗E1(A;C) and Mul∇2⊗E1(B;C),
respectively :

µ ◦ (idA ⊗ 1B) ≃ f µ ◦ (1A ⊗ idB) ≃ g.
Composing these, we conclude:

µ ≃ µ ◦ (µA ⊗ µB) ◦ (idA ⊗ 1A ⊗ 1B ⊗ idB) ≃ µC ◦ (µ⊗ µ) ◦ (idA ⊗ 1A ⊗ 1B ⊗ idB) ≃ µC ◦ (f ⊗ g)
Hence, µ is in the image of

Mul{• → • ← •}⊗E1
(C,C;C)×Mul{• → • ← •}⊗E1

(A;C)×Mul{• → • ← •}⊗E1
(B,C)

→ Mul{• → • ← •}⊗E1
(A,B;C)→ Mul∇2⊗E1

(A,B;C).

Since Op is a presentably monoidal category, the pushout squares (7.2) induce pushout squares

∇2 ⊗ E0 ⊗ E1 [1]⊗ E1 E1

∇2 ⊗ E1 T2 ⊗ E1 A2 ⊗ E1.
⌜ ⌜

Since left class in a factorization system is preserved under pushouts, so [1] ⊗ E1 → T2 ⊗ E1 and
E1 → A2 ⊗ E1 are also 0-surjective. □

7.7. From A2⊗E1- to E2-algebras. Considering the filtration A1⊗E1 → A2⊗E2 → . . .A∞⊗E1 =
E1 ⊗ E1 ≃ E2, an A2 ⊗ E1-structure is less data than a fully coherent E2-structure. However, as
suggested by Corollary 7.4.15, A2 ⊗E1-structures on 1-categories already agree with E2-structures. In
this section, we prove a generization that holds for any 2-categorical operad.

Definition 7.7.1. For n ≥ −1, an n-operad is an ∞-operad all of whose multi-hom spaces, i.e. the
MulO(X1, . . . , Xk;Y ), are (n − 1)-truncated. We extend this to the case n = −2 by declaring the
terminal operad to be a (−2)-operad. We denote the full subcategory of Op on the n-operads by Opn.

Equivalently, an ∞-operad is an n-operad if and only if the terminal operad map O → E∞ is
n-faithful.

Example 7.7.2. A 1-operad is precisely one that is equivalent to (the nerve of) an ordinary operad.

Example 7.7.3. A symmetric monoidal (∞, 1)-category C, considered as an∞-operad, is an n-operad
if and only if its underlying category is an (n, 1)-category (also see Definition 5.4.1).

The notion of n-truncated morphism defined in Definition 5.2.1 generalizes to any ∞-category:

Definition 7.7.4. For n ≥ −2, a morphism f : A → B in an ∞-category C is called n-truncated if
the induced map of spaces HomC(X,A) → HomC(X,B) is n-truncated, see Definition 5.2.1, for every
object X ∈ C.
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In particular, a morphism f : A → B in an ∞-category C is 0-truncated if for every object X ∈ C,
the map HomC(X,A)→ HomC(X,B) is 0-truncated, i.e. all its fibers are discrete sets. For an ordinary
monoidal 1-category A, the monoidal functor Z1(A) → A is faithful, and in particular 0-truncated as
a morphism in the ∞-category AlgE1

(Cat1) (see Warning 5.3.9). The following is a generalization of
this statement:

Proposition 7.7.5. Let C be a symmetric monoidal (2, 1)-category and A ∈ AlgE1
(C) whose center

Z1(A) ∈ AlgE2
(C) exists. Then, the morphism Z1(A)→ A is a 0-truncated morphism in AlgE1

(C).
Proof. Let X ∈ AlgE1

(C). Since Z1(A) is the centralizer Z(idA) of the morphism idA in AlgE1
(C)

and the unit of AlgE1
(C) is initial, the universal property of the centralizer implies that the map

HomAlgE1 (C)
(X,Z1(A))→ HomAlgE1 (C)

(X,A) is equivalent to the composite

HomAlgE1 (C)
(X ⊗A,A)×HomAlgE1 (C)(A,A) {idA} → HomAlgE1 (C)

(X ⊗A,A)→ HomAlgE1 (C)
(X,A).

By definition of the ∞-operad ∇2 in Lemma 7.2.3, the fiber of this map at an f ∈ HomAlgE1 (C)
(X,A)

is precisely the space of lifts of the operad map {• → • ← •} = ∇2 ⊗ E0 → AlgE1
(C) classified by the span

of E1-morphisms X
f−→ A

idA←−− A, to an operad map ∇2 ⊗ E0 → AlgE1
(C). Equivalently, this is the

space of lift

∇2 ⊗ E0 ⊗ E1 C

∇2 ⊗ E1

.

By assumption, C is a symmetric monoidal (2, 1)-category, hence a 2-operad and hence the operad map
C → ∗ is 2-faithful. Since the left vertical operad map is 0-surjective by Proposition 7.6.1, it follows
from Corollary 7.5.5 that this space of lifts is 0-truncated. □

Corollary 7.7.6. Let C be a presentably symmetric monoidal (2, 1)-category. Then, the map of spaces

HomOp(E2, C)→ HomOp(A2 ⊗ E1, C)
is an equivalence.

Proof. Consider the diagram of spaces

HomOp(E2, C) HomOp(A2 ⊗ E1, C)

HomOp(E1, C)

.

To prove that the horizontal map is an equivalence, it suffices to show that for every A ∈ AlgE1
(C), the

induced map between fibers

HomOp(E2, C)×HomOp(E1,C) {A} → HomOp(A2 ⊗ E1, C)×HomOp(E1,C) {A}
is an equivalence.

Since C is presentably symmetric monoidal, it follows that centralizers and centers exist [Lur17, Cor.
5.3.1.15] and hence, by applying Corollary 7.4.12, that the latter space is equivalent to

(
AlgE1

(C)/Z1(A)

)≃ ×(AlgE1 (C)/A)
≃ {idA}.

Applying Lemma 7.4.14 to the ∞-category AlgE1
(C), we find that the functor

AlgE2
(C)/Z1(A) ×AlgE1 (C)/A

{idA} → AlgE2
(C)×AlgE1 (C)

{A}
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is an equivalence. It therefore suffices to show that the forgetful functor

(7.13) AlgE2
(C)/Z1(A) ×AlgE1 (C)/A

{idA} → AlgE1
(C)/Z1(A) ×AlgE1 (C)/A

{idA}

is an equivalence.
Proposition 7.7.5 implies that the map Z1(A)→ A is 0-truncated as a morphism in AlgE1

(C). Hence,
any section A→ Z1(A) is (−1)-truncated. Therefore, the map (7.13) is equivalent to the map

AlgE2
(C)/−1Z1(A) ×AlgE1 (C)/A

{idA} → AlgE1
(C)/−1Z1(A) ×AlgE1 (C)/A

{idA}

where −/−1Z1(A) denote full subcategories of (−1)-truncated E1-maps (see Notation 5.5.1). To prove
this is an equivalence, it suffices to show that

(7.14) AlgE2
(C)/−1Z1(A) → AlgE1

(C)/−1Z1(A)

is an equivalence. But given any (X ↪→ Z1(A)) in AlgE1
(C)/−1Z1(A), the fiber of (7.14) is equivalent to

the space of dashed lifts in Op

(7.15)

E1 Ar−1(C)

E2 C

{X↪→Z1(A)}

t

{Z1(A)}

where Ar−1(C) denotes the full symmetric monoidal subcategory of the arrow category Ar(C) :=
Fun([1], C) on the (−1)-truncated morphisms.

But since E1 → E2 is 0-surjective, i.e. essentially surjective on objects and (−1)-connected on multi-
hom spaces E1(n) ≃ Sn → E2(n) = Conf(n,R2), and since Ar−1(C)→ C is 0-faithful36, it follows from
Proposition 7.5.3 that the space of lifts (7.15) is contractible. □

Remark 7.7.7. Since an A2 ⊗ E1-structure on a given monoidal 1-category is by Corollary 7.4.15.(2)
precisely the data of a braiding, Corollary 7.7.6 in particular implies the well-known observation
(see [Lur17, Ex. 5.1.2.4]) that braided monoidal structures and E2-structures coinicide on ordinary
1-categories.

Corollary 7.7.8. For any 2-operad O, the map of spaces HomOp(A2⊗E1,O)→ HomOp(E2,O) is an
equivalence.

Proof. The full inclusion Op2 ↪→ Op admits a left adjoint h2 : Op → Op2 (constructed in [SY20,
Thm. 3.12]). Moreover, it follows from [SY19, Prop. 3.2.6(4)] applied to Corollary 7.7.6 that the
operad map h2(A2 ⊗ E1) → h2(E2) is an equivalence (i.e. that A2 ⊗ E1 → E2 is a 1-equivalence in
the terminology of [SY19]). By adjunction, it follows that for any 2-operad O, the map HomOp(A2 ⊗
E1,O)→ HomOp(E2,O) is an equivalence. □

Remark 7.7.9. In other words, Corollary 7.7.8 shows that A2 ⊗ E1 → E2 is a 1-equivalence in the
sense of [SY19], i.e. it is essentially surjective on the underlying categories and induces an equivalence
on the 0-truncations of all the multimapping spaces.

36Given f, g ∈ Ar−1(C), the fiber of the induced map on hom-spaces HomAr(C)(f, g) → HomC(tf, tg) at an h ∈
HomC(tf, tg) is the space of lifts HomC/tg

(h ◦ f, g). Since g is (−1)-truncated, this space is (−1)-truncated.
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7.8. Lifting maps of algebras. We end this section with an elementary, but very useful observation
about ∞-operads.

We recall the following easy fact: Given functors F,G : A → B and H : B → C of ∞-categories and
assume that for all a, a′ ∈ A the map

(7.16) HomB(Fa,Ga
′)

H(−)−−−→ HomC(HFa,HGa
′)

is an equivalence of spaces.
We will now prove that this implies that also the map between spaces of natural transformations

Nat(F,G)→ Nat(HF,HG)

is an equivalence. Formally, this can be expressed as follows:

Lemma 7.8.1. Given a functor H : B → C of ∞-categories and a commuting square of ∞-categories

(7.17)

S0 = {0, 1} Fun(A,B)

[1] = {0 < 1} Fun(A, C).

Assume that for any b0, b1 ∈ B in the image of {0} × A → S0 ×A → B and {1} × A → S0 ×A → B,
respectively, and any commuting square

S0 B

[1] C,

{b0,b1}

the space of dashed lifts is contractible. Then, the space of lifts of the square (7.17) is contractible.

Proof. Since pt and [1] generate Cat∞ under colimits, it suffices to show that for every a ∈ A and

every arrow [1]
{f}−−→ A, the induced total squares

S0 Fun(A,B) B

[1] Fun(A, C) C

eva

eva

and

S0 Fun(A,B) Fun([1],B)

[1] Fun(A, C) Fun([1], C)

evf

evf

have contractible spaces of lifts. Contractibility of the spaces of lifts of the former square follows imme-
diately from assumption, and for the latter square is a straight-forward computation assuming (7.16)
is an equivalence. □

The goal of this subsection is to prove a generalization of this statement for ∞-operads.

Proposition 7.8.2. Let O,P be ∞-operads and let b and c be O-algebras in P.
(1) Let F : P → Q be an operad map such that for all n ≥ 0 and colors X1, . . . , Xn, Y in O, the

map of spaces

MulP(bX1 , . . . , bXn ; cY )
F (−)−−−→ MulQ(FbX1 , . . . , F bXn ;FcY )

is an equivalence. Then, for any m ≥ 0, the map of multi-hom spaces

MulAlgO(P)(b, . . . , b︸ ︷︷ ︸
m

; c)
F (−)−−−→ MulAlgO(Q)(Fb, . . . , F b︸ ︷︷ ︸

m

;Fc)

is an equivalence.
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(2) Let f : a → b be a morphism of O-algebras in P. Assume that for all n ≥ 0 and colors
X1, . . . , Xn, Y in O, the map of spaces

MulP(bX1
, . . . , bXn

; cY )
−◦(f,...,f)−−−−−−−→ MulP(aX1

, . . . , aXn
; cY )

is an equivalence. Then, for any m ≥ 0, the map of multi-hom spaces

MulAlgO(P)(b, . . . , b︸ ︷︷ ︸
m

; c)
−◦(f,...,f)−−−−−−−→ MulAlgO(P)(a, . . . , a︸ ︷︷ ︸

m

; c)

is an equivalence for all n.

To prove Proposition 7.8.2, we recall the following formula for mapping spaces in AlgO(P):

Observation 7.8.3. Given a sequence of objects (b1, . . . , bn) and another object c in AlgO(P), the
multi-hom space MulAlgO(P)(b1, . . . , bn; c) is explicitly defined, as for any ∞-operad, as the space of
lifts of the square

(7.18)

S0 AlgO(P)⊗

[1] Fin∗

(b1,...,bn);c

n+→1+

Let Fin∗ × Fin∗
∧−→ Fin∗ denote the smash product symmetric monoidal structure of Fin∗ (see [Lur17,

Not. 2.2.5.1]). Unwinding the definition of AlgO(P)⊗ from [Lur17, Cons. 3.2.4.1], this space of lifts is
equivalent to the full subspace of the space of lifts

(7.19)

S0 ×O⊗ P⊗

[1]×O⊗ Fin∗ × Fin∗ Fin∗
∧

on those lifts with the property that for every vertex v ∈ [1], the map O⊗ ≃ {v} × O⊗ → [1]×O⊗ →
P⊗ sends inert coCartesian morphisms to inert coCartesian morphisms. However, since S0 → [1] is
surjective on objects this condition is automatically satisfied since it is satisfied by the top horizontal
map. Thus, the space of lifts of (7.18), and hence the multi-hom space MulAlgO(P)(b1, . . . , bn; c) is
equivalent to the space of lifts of (7.19). Hence, after adjunction, it is equivalent to the space of lifts

S0 Fun(O⊗,P⊗)

[1] Fun(O⊗,Fin∗)

More generally, given any functor of ∞-categories X → Y which is surjective on objects, an ∞-operad
map P → Q and a commuting square of ∞-categories

X AlgO(P)⊗

Y AlgO(Q)⊗,



A BRAIDED MONOIDAL (∞, 2)-CATEGORY OF SOERGEL BIMODULES 99

the same argument shows that the space of (dashed) lifts of this square is equivalent to the space of
lifts

X Fun(O⊗,P⊗)

Y Fun(O⊗,Q⊗).

Proof of Proposition 7.8.2. To prove part (1), fix an n ≥ 0 and consider the functor S0 = {0, 1} →
AlgO(P)⊗, sending 0 to (b, . . . , b) and 1 to (c). Fix a µ ∈ MulAlgO(Q)(Fb, . . . , F b;Fc). This determines
a commuting square of ∞-categories

S0 AlgO(P)⊗

[1] AlgO(Q)⊗.
The fiber of MulAlgO(P)(b, . . . , b; c)→ MulAlgO(Q)(Fb, . . . , F b;Fc) at µ is precisely the space of lifts of
this square. By Observation 7.8.3, this space of lifts is equivalent to the space of lifts

S0 Fun(O⊗,P⊗)

[1] Fun(O⊗,Q⊗)

By Lemma 7.8.1, to prove contractibility of this space of lifts, it suffices to verify that for each p0, p1 ∈
P⊗ in the image of {0} × O⊗ → S0 ×O⊗ → P⊗ and {1} × O⊗ → S0 ×O⊗ → P⊗, respectively, any
square

S0 P⊗

[1] Q⊗

{p0,p1}

has a contractible space of lifts. Using the Segal condition on ∞-operads, this precisely unpacks to the
condition in the statement of the proposition.

To prove part (2), fix an n ≥ 0 and a point h ∈ MapAlgO(P)(a, . . . , a; c). Let Λ
2
0 = {0 < 1}⊔{0} {0 <

2} =
{ }

denote the outer horn. Then, the multi-ary operation h together with our original operation
f ∈ MulAlgO(P)(a; b) assembles into a commutative diagram as on the right:

S0 × [1] Λ2
0 AlgO(P)⊗

[1]× [1] [2] Fin∗
⌜

{
h

f

}

{n+

id−→n+→1+}

The fiber of MulAlgO(P)(b, . . . , b; c) → MulAlgO(P)(a, . . . , a; c) at h is precisely the space of lifts of the
right square. Since the left square is a pushout, this space is equivalent to the space of lifts of the total
square. By Observation 7.8.3, this space of lifts is equivalent to the space of lifts of the square

S0 × [1] Fun(O⊗,P⊗)

[1]× [1] Fun(O⊗,Fin∗)
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and hence to the space of lifts of the square

S0 Fun(O⊗,Fun([1],P⊗))

[1] Fun(O⊗,Fun([1],Fin∗)).

By Lemma 7.8.1, a sufficient condition for contractibility of this space is that for all pair of objects
c0, c1 ∈ Fun([1],P⊗) in the image of {0}×O⊗ → S0×O⊗ → Fun([1],P⊗) and {1}×O⊗ → S0×O⊗ →
Fun([1],P⊗), respectively, the space of lifts of all commuting squares of the form

S0 Fun([1],P⊗)

[1] Fun([1],Fin∗)

{c0,c1}

is contractible. Using the Segal condition on P⊗, this is satisfied provided the conditions in the
statement of the proposition hold.

□
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8. The main theorem

Throughout this section, we fix a Q-algebra37 k. The goal of this section is to prove our main Theo-
rem B and hence to construct a fully coherent E2-structure on the monoidal (∞, 2)-categoryKb

loc(Sbim)
introduced in Definition 6.4.1, compatible with its structure as an object of AlgE1

(Cat[stBZ
k ]) (i.e. com-

patible with local k-linearity and Z-action) together with an E2-structure on its monoidal functor
Hloc : K

b
loc(Sbim)→ stBZ

k from Notation 6.5.5.
Our proof proceeds by successively rewriting the space of such E2-structures into spaces of simpler

categorical structures; namely ∞-categorical variants of the prebraidings encountered in §2.4.

8.1. Spaces of braidings and prebraidings.

Notation 8.1.1. Let V be a symmetric monoidal ∞-category, or more generally an ∞-operad.

(1) For an E1-algebra A in V, we write

BraidV(A) := HomOp(E2,V)×HomOp(E1,V) {A}
for the space of E2-algebra structures on A compatible with the given E1-structure and refer
to this space as the space of braidings on A.

(2) For an E1-algebra A in V, we write

PreBraidV(A) := HomAlgE1 (V)(A⊗A,A)×HomAlgE1 (V)(A,A)×2 {idA, idA}

and refer to this space as the space of prebraidings on A.
(3) For f : A→ B a morphism of E1-algebras in V, we write

PreBraidV(f) := HomAlgE1 (V)(A⊗A,B)×HomAlgE1 (V)(A,B)×2 {f, f}

and refer to this space as the space of prebraidings on f .

For an E1-algebra A, it follows by definition that PreBraidV(A) = PreBraidV(idA). Recall from
Corollary 7.2.6 that analogous to BraidV , the spaces of prebraidings are also corepresented by certain
∞-operads:

PreBraidV(A) = HomOp(A2 ⊗ E1,V)×HomOp(E1,V) {A}
PreBraidV(f : A→ B) = HomOp(T2 ⊗ E1,V)×HomOp([1]⊗E1,V) {f}

Moreover, for any E1-algebra A, composing with the operad map A2 ⊗ E1 → E1 ⊗ E1 ≃ E2 from
Example 7.2.7 defines a ‘forgetful’ map of spaces

(8.1) BraidV(A)→ PreBraidV(A).

Example 8.1.2. For an ordinary monoidal 1-category A ∈ AlgE1
(Cat(1,1)) it follows from Corol-

lary 7.7.8 that the map of spaces

BraidCat(1,1)(A)→ PreBraidCat(1,1)(A).
is an equivalence. By Corollary 7.4.15(2), these spaces are equivalent to the (discrete) set of classical
braidings on A.

Similarly, it follows from Corollary 7.4.15(1) that for monoidal functors F : A → B between ordinary
monoidal 1-categories, the spaces PreBraidCat(1,1)(F ) are equivalent to the (discrete) set of classical
prebraidings on F in the sense of Definition 2.4.8.

37As in Section 6, all results in this section which do not specifically refer to the categories of Bott-Samelson and Soergel
bimodules apply more generally to arbitrary connective ring spectra k ∈ CAlg(Sp≥0), and to arbitrary commutative

monoids Z ∈ CAlg(S) in place of Z.
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Warning 8.1.3. Example 8.1.2 is key to our paper, and is at the heart of an observation already
encountered in Remark 2.4.4: While braidings and prebraidings on ordinary monoidal 1-categories
coincide, the notions already diverge for monoidal 2-categories; the map (8.1) is in general far from an
equivalence.

As in §2.4, we would also like to consider spaces of prebraidings over a given fixed prebraiding.
The following generalizes Definition 2.4.5 to the ∞-categorical setting.

Definition 8.1.4. Let V be a symmetric monoidal∞-category, C an E2-algebra (or merely an A2⊗E1-

algebra) and A
f−→ B

g−→ C be maps of E1-algebras. We define the space PreBraidV(f)/C of prebraidings

on f over C to be the space T
AlgE1 (V)

2 (f)/C from Definition 7.3.1.
Unpacked, a prebraiding on f over C is therefore a prebraiding on f together with an identification

of the induced prebraiding on g ◦ f with the one induced by the E2-structure of C.

Example 8.1.5. It follows from Example 8.1.2 that for an ordinary braided monoidal 1-category C, and
monoidal 1-functorsA F−→ B g−→ C between ordinary monoidal 1-category, the space PreBraidCat(1,1)(F )/C
of prebraidings on F over C in the sense of Definition 8.1.4 agrees with the set PreBraid/C(F ) of pre-
braidings over C from Definition 2.4.8.

Recall from §A.8.6 that for an E∞-algebra C in a symmetric monoidal ∞-category V, the over-
∞-category V/C inherits a symmetric monoidal structure so that for any ∞-operad O, there is an
equivalence of ∞-categories AlgO(V/C) ≃ AlgO(V)/C .

Example 8.1.6. It immediately follows from the defining property of V/C , that for a given E1-algebra
in V/C , i.e. an E1-algebra A equipped with an E1-algebra map A→ C, the space BraidV/C

(A) encodes
a compatible E2-structure on A together with E2-structure on the E1-morphism A→ C.

Following Example 8.1.6, to prove Theorem B and to study E2-structures on Kb
loc(Sbim) together

with E2-structures on its fiber functor Kb
loc(Sbim) → stBZ

k , we will therefore need to study the space
BraidCat[stBZ

k ]
/stBZ

k

(
Kb

loc(Sbim)
)
and relate it to certain spaces of prebraidings in certain over-categories.

These spaces can be understood in terms of prebraidings over given prebraidings in the sense of Defi-
nition 8.1.4:

Corollary 8.1.7. Let C be an E∞-algebra in a symmetric monoidal ∞-category V, and let F be a
morphism of E1-algebras in V/C , i.e. equivalently a commuting diagram

A B

C

f

of E1-algebras in V. Then, the spaces

PreBraidV/C
(F ) ≃ PreBraidV(F )/C

are equivalent.

Proof. Apply Proposition 7.3.2 to the symmetric monoidal ∞-category AlgE1
(V/C) ≃ AlgE1

(V)/C . □

Example 8.1.8. Combining Corollary 8.1.7 with Example 8.1.5 we find that in the setup of Exam-
ple 8.1.5, the space PreBraid(Cat(1,1))/C (F ) agrees with the set PreBraid/C(F ) of prebraidings over C
from Definition 2.4.8.
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8.2. Statement of the main theorem. By Example 8.1.6, the space of compatible E2-structures
on Kb

loc(Sbim) together with compatible E2-structures on its fiber functor Hloc : K
b
loc(Sbim)→ stBZ

k is
precisely given by the space

BraidCat[stBZ
k ]

/stBZ
k

(Kb
loc(Sbim)),

whereKb
loc(Sbim) is seen as an E1-algebra in Cat[stBZ

k ]/stBZ
k

via its E1-functorHloc : K
b
loc(Sbim)→ stBZ

k .

Our main theorem will prove that this space is in fact a set, namely the set of prebraidings in the sense
of §2.4 on a functor between certain ordinary monoidal 1-categories. The key fact we use is that while
the (∞, 2)-‘fiber’-functor Kb

loc(Sbim)→ stBZ
k is not faithful, the composite Sbim→ Kb

loc(Sbim)→ stBZ
k

is faithful by Lemma 6.5.6, i.e. induces fully faithful functors on all hom-categories. Furthermore,
Sbim is generated by the (2, 2)-category BSbim from Definition 6.1.4, in the sense that the functor
BSbim → Sbim is surjective on objects and that any 1-morphism in Sbim is a retract of a finite
coproduct of grading shifts of 1-morphisms in the image of BSbim as proven in Proposition 6.3.2.

For future applications, we abstract this situation as follows:

Theorem 8.2.1. Let C ∈ AlgE1
(Cat[addBZ

k ]), D ∈ AlgE∞
(Cat[stBZ

k ]) and let H : C → D be a morphism

in AlgE1
(Cat[addBZ

k ]) whose underlying (∞, 2)-functor is faithful, i.e. induces fully faithful functors on

hom-categories. Consider the monoidal functor Kb
loc(C) → D, induced by the adjunction (6.6), as an

object of AlgE1

(
Cat[stBZ

k ]/D
)
.

(1) Then, the map of spaces (constructed more formally in the proof below)

(8.2) BraidCat[stBZ
k ]/D

(Kb
loc(C))→ PreBraidCat(1,1)/h1D

(h1C → h1K
b
loc(C)),

which restricts a braiding on Kb
loc(C) to a prebraiding on the subcategory inclusion C → Kb

loc(C)
and then passes to the homotopy 1-category h1, is an equivalence. (Here, we leave the evident
maps to D and h1D implicit.)

(2) Further, assume there is a functor ι : B → C in AlgE1
(Cat(∞,2)) which is surjective on objects

and such that for every two objects b, b′ ∈ B, any object in HomC(ιb, ιb
′) ∈ addBZ

k is a retract
of a finite coproduct of Z-shifts of objects in the image of HomB(b, b

′) ∈ Cat(∞,1). Then, the
pre-composition map

PreBraidCat(1,1)/h1D
(h1C → h1K

b
loc(C))→ PreBraidCat(1,1)/h1D

(h1B → h1K
b
loc(C))

is an equivalence of spaces.

In other words, Theorem 8.2.1 asserts that the space of pairs of an E2-structure on Kb
loc(C) and an

E2-structure on the functor Kb
loc(C) → D, compatible with their given E1-structures, is equivalent to

the set of prebraidings on h1B → h1K
b
loc(C) over h1D.

In the remainder of Section 8, we prove Theorem 8.2.1 by factoring (8.2) through various other
spaces of prebraiding. Before discussing the proof, we immediately record how Theorem 8.2.1 implies
Theorem B from the introduction:

Corollary 8.2.2. The space of braidings

(8.3) BraidCat[stBZ
k ]

/stBZ
k

(
Kb

loc(Sbim)
)

is equivalent to the set of prebraidings

(8.4) PreBraid/h1DMorpoly,gr−perf (modZ
k)
(h1BSbim→ h1K

b
loc(Sbim))

over h1Hloc : h1K
b
loc(Sbim)→ h1DMorpoly,gr−perf(modZk) as defined in Definition 2.4.8.
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In particular, the space of pairs of an E2-algebra structure on Kb
loc(Sbim) ∈ Cat[stBZ

k ] together
with an E2-algebra structure on the functor Hloc : K

b
loc(Sbim) → stBZ

k , which enhance their monoidal
structures, and satisfy the condition that the positive braiding

σ1,1 : 1⊗ 1→ 1⊗ 1 ∈ HomKb
loc(Sbim)(1⊗ 1, 1⊗ 1) = Kb(Sbim2)

agrees up to chain homotopy with the shifted Rouquier complex X1,1 = F (σ1,1)⟨−1⟩ from Defini-
tion 2.2.7 and (2.6), is contractible.

Proof. Recall that the functor Kb
loc(Sbim)→ stBZ

k factors by definition through the small full subcat-

egory DMorpoly,gr−perf(modZk) ↪→ DMorflat,gr−perf(modZk) ↪→ stBZ
k . Hence, the space (8.3) is equivalent

to the space

(8.5) BraidCat[stBZ
k ]

/DMorpoly,gr−perf (modZ
k
)

(
Kb

loc(Sbim)
)
.

We now invoke Theorem 8.2.1 for C = Sbim, D = DMorpoly,gr−perf(modZk), and B = BSbim, the functor

Hloc : Sbim → DMorpoly,gr−perf(modZk) from Proposition 6.5.2 which is faitfhul by Lemma 6.5.6, and
the functor ι : BSbim → Sbim from (6.5) which satisfies the relevant conditions of Theorem 8.2.1 by
Proposition 6.3.2. Thus, the space of braidings (8.5) is equivalent to the space of prebraidings

(8.6) PreBraid(Cat(1,1))/h1DMorpoly,gr−perf (modZ
k
)
(h1BSbim→ h1K

b
loc(Sbim)).

Both, h1BSbim → h1K
b
loc(Sbim) and h1K

b
loc(Sbim) → h1DMorpoly,gr−perf(modZk), agree with the

respective functors from Section 2, namely with (2.13) by Corollary 6.4.3 and with (2.14) by Corol-
lary 6.5.4 respectively. Hence, it follows from Example 8.1.8 that this space (8.6) is equivalent to the
set PreBraid/h1DMorpoly,gr−perf (modZ

k)

(
h1BSbim→ h1K

b
loc(Sbim)

)
from Theorem 2.6.4.

The second half of Corollary 8.2.2 follows directly from the first: By Corollary 2.5.3, the condition
on the positive braiding σ1,1 fixes an element of the set (8.4) and hence a point in the space (8.3).
Thus, there is a contractible space of braidings on Kb

loc(Sbim) over stBZ
k compatible with the given

prebraiding on h1BSbim→ h1DMorpoly,gr−perf(modZk). □

Remark 8.2.3. Consider the functor

h2 : AlgE2
(Cat[stBZ

k ])→ AlgE2
(Cat(2,2))

induced by the lax symmetric monoidal composite

Cat[stBZ
k ]

Cat[forget]−−−−−−−→ Cat[Cat∞] = Cat(∞,2)
h2−→ Cat(2,2)

which first forgets along stBZ
k → Cat∞

38 the homwise structure and then takes the homotopy 2-category
(Definition 5.4.11). Applying this to Kb

loc(Sbim) ∈ AlgE2
(Cat[stBZ

k ]) results in the braided monoidal

(2, 2)-category H := h2K
b
loc(Sbim) ∈ AlgE2

(Cat(2,2)) described in Section 1.1.

8.3. From prebraidings to braidings. Our proof will proceed by successively simplifying the space
of prebraidings and braidings on Kb

loc(C). This subsection contains the operadic heart of our proof,
captured by four corollaries of results in Section 7.

Definition 8.3.1. Given a map of spaces f : A→ B, we let Im(f) ⊆ B denote the full image of f , i.e.
the subspace of B given by the union of those connected components of B in the image of π0f .

In other words, A → Im(f) ↪→ B is the factorization of f with respect to the ((−1)-connected,
(−1)-truncated)-factorization system on spaces.

38The forgetful functor stBZ
k → Cat∞ is right adjoint to the composite Cat∞

Link(−×Z)−−−−−−−−→ addBZ
k

Kb

−−→ stBZ
k of the

symmetric monoidal functors from (6.2) and Proposition 4.3.2(2) and is hence laxly symmetric monoidal.
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Observation 8.3.2. Recall the (0-surjective, 0-faithful) factorization system on the ∞-category Op
from Definition 7.5.1 and Proposition 7.5.3.

(1) Given a map of operads E1 → O, corepresenting an E1-algebra A in O, we write O|E1
for the

factorization E1 → O|E1 → O into a 0-surjective followed by a 0-faithful map of operads.
Explicitly, O|E1 has one color A and the only non-empty multi-hom spaces are given by the

full images

MulO|E1 (A, . . . , A;A) = Im (Sn → MulO(A, . . . , A;A))

of the map E1(n) = Sn → MulO(A, . . . , A;A) induced by the E1-structure on A.
(In other words, Im (Sn → MulO(A, . . . , A;A)) is precisely the union of those components of

MulO(A, . . . , A;A) which contain the orbit of the n-ary multiplication of A under the Sn-action
permuting its inputs.)

(2) Given a map of operads [1]⊗E1 → O, corepresenting a morphism f : A→ B of E1-algebras in
O, we write O|[1]⊗E1

for the factorization [1]⊗ E1 → O|[1]⊗E1
→ O into a 0-surjective followed

by a 0-faithful map of operads.
Explicitly, O|[1]⊗E1

has (at most) two colors A,B and multi-hom spaces connecting them,
one of them being

MulO|[1]⊗E1
(A, . . . , A;B) = Im (Sn → MulO(A, . . . , A;B)) ,

where the map from Sn = E1(n) is induced by the E1-structures on f . (In other words,
Im (Sn → MulO(A, . . . , A;B)) is the union of those components of MulO(A, . . . , A;B) which
contain the orbit of f ◦ µA ≃ µB ◦ f under the Sn-action permuting its inputs.)

(3) Given a map of operads [2] ⊗ E1 → O, corepresenting a composable pair of E1-algebra mor-
phisms A → B → C, we can similarly consider O|[2]⊗E1

, which has (at most) three objects
A,B,C, and multi-hom spaces connecting them, such as

MulO|[2]⊗E1
(A, . . . , A;B) = Im (Sn → MulO(A, . . . , A;B))

MulO|[2]⊗E1
(B, . . . , B;C) = Im (Sn → MulO(B, . . . , B;C)) ,

where the maps from Sn = E1(n) are induced by the E1-structure on f and g, respectively.

Throughout we will repeatedly use the following simple observation, applied to the ∞-category
V = Op with its (0-surjective, 0-faithful) factorization system.

Lemma 8.3.3. In an ∞-category V with a factorization system (L,R), consider a commuting square

A B

C D

and a further morphism Q→ A in L so that also the composite Q→ C is in L. Let Q→ B|Q → B and
Q → D|Q → D denote the factorizations of the induced morphisms from Q. Then, the map between
spaces of (dashed) lifts 




A B|Q

C D|Q




−→





A B

C D




.

is an equivalence. 39

39The left diagram exists since Q→ A and Q→ C are in L, while B|Q → B and D|Q → D are in R.
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Proof. Let VQ/L denote the full subcategory of VQ/ on the morphisms Q → X which are in L. The
factorization system induces a right adjoint of the inclusion VQ/L ↪→ VQ/ which sends Q → X to its
factorization Q→ X|Q. The statement then follows immediately from adjunction. □

The fact that braidings and prebraidings agree on ordinary 1-categories, see Example 8.1.2, gener-
alizes to the following observation:

Corollary 8.3.4. Let O be an ∞-operad, A an E1-algebra in O, and assume that the spaces

Im


Sn → MulO(A, . . . , A︸ ︷︷ ︸

n

;A)




are 1-truncated (i.e. 1-groupoids) for all n ≥ 0, where the map from Sn = E1(n) is induced by the
E1-structure on A. Then, the map of spaces

BraidO(A)→ PreBraidO(A)

is an equivalence.

Proof. Fix a prebraiding on A, represented by a lift of the map of ∞-operads E1 → O representing A,
to a map of ∞-operads A2 ⊗ E1 → O. The fiber of BraidO(A)→ PreBraidO(A) at this prebraiding is
precisely the space of further lifts

A2 ⊗ E1 O

E2

.

The operad map E1 → A2⊗E1 is 0-surjective by Proposition 7.6.1, and the composite E1 → A2⊗E1 →
E2 is 0-surjective since all mapping spaces of E2 are connected and all mapping spaces of E1 are non-
empty. Hence, it follows from Lemma 8.3.3 applied to the ∞-category Op (with its (0-surjective,
0-faithful) factorization system) that this space of lifts is equivalent to the space of lifts

A2 ⊗ E1 O|E1

E2

.

Since all multi-hom spaces of O|E1 are by assumption 1-truncated, and hence O|E1 is a 2-operad (see
Definition 7.7.1), it follows from Corollary 7.7.8 that this space of lifts is contractible. □

Corollary 8.3.5. Let F : O → P be a map of∞-operads and let g : b→ c be a morphism of E1-algebras
in O. Assume that for all n ≥ 0 the map of spaces

Im


Sn → MulO(b, . . . , b︸ ︷︷ ︸

n

; c)


 F (−)−−−→ Im


Sn → MulP(F (b), . . . , F (b)︸ ︷︷ ︸

n

;F (c))




is an equivalence, where the maps from Sn are induced by the E1-structure on g and F (g). Then, the
map of spaces

PreBraidO(g)→ PreBraidP(F (g))

is an equivalence.
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Proof. Consider the map of operads [1] ⊗ E1 → O representing the E1-algebra map f : A → B. The
fiber of PreBraidO(f)→ PreBraidP(F (f)) at a prebraiding represented by an operad map T2⊗E1 → P
is precisely the space of (dashed) lifts of the following commuting square of operads:

[1]⊗ E1 O

T2 ⊗ E1 P.

{f :a→b}

F

Since [1]⊗E1 → T2⊗E1 is 0-surjective, it follows from Lemma 8.3.3 that this space of lifts is equivalent
to the space of lifts

[1]⊗ E1 O|[1]⊗E1

T2 ⊗ E1 P|[1]⊗E1
.

{f :a→b}

.

Hence, replacing O by O|[1]⊗E1
and P by P|[1]⊗E1

with multimapping spaces as in Observation 8.3.2,
we may without loss of generality assume that the maps

MulO(a, . . . , a; b)→ MulP(Fa, . . . , Fa;Fb)

are equivalences. It then follows from Proposition 7.8.2.(1) that the maps

MulAlgE1 (O)(a, . . . , a; b)→ MulAlgE1 (P)(Fa, . . . , Fa;Fb)

are equivalences. Hence,

PreBraidO(g) =MulAlgE1 (O)(a, a; b)×MulAlgE1 (O)(a,b)2 {g}
−→ MulAlgE1 (P)(Fa, Fa;Fb)×MulAlgE1 (P)(Fa,Fb)2 {Fg} = PreBraidO(Fg)

is an equivalence. □

Corollary 8.3.6. Let O be an ∞-operad and let

a
f−→ b

g−→ c

be morphisms of E1-algebras in O. Assume that for all n ≥ 0, the map of spaces

Im


Sn → MulO(b, . . . , b︸ ︷︷ ︸

n

; c)


 −◦(f,...,f)−−−−−−−→ Im


Sn → MulO(a, . . . , a︸ ︷︷ ︸

n

; c)




are equivalences, where the maps from Sn are induced by the E1-structures on g and on g ◦ f . Then,
the map of spaces

PreBraidO(g)→ PreBraidO(g ◦ f)
is an equivalence.

Proof. The pair of composable morphisms of E1-algebras {f, g} may be corepresented by an operad
map [2]⊗E1 → O. Recall the operad maps [2]⊗E0 → T2⊔{0<2} [2]→ T2⊔{1<2} from Observation 7.2.10
corepresenting a pair of composable E0-morphisms with a T2-structure on g and on g ◦ f , respectively,
and the construction of a T2-structure on g from a T2-structure on g ◦ f .
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Fix a prebraiding on g ◦f , corepresented by a lift of the operad map [2]⊗E1 → O to an operad map
T2 ⊔{0<2} [2]⊗ E1 → O. The fiber of PreBraidO(g)→ PreBraidO(g ◦ f) is given by the space of lifts

(
T2 ⊔{0<2} [2]

)
⊗ E1 O

(
T2 ⊔{1<2} [2]

)
⊗ E1

.

We now claim that both operad maps

(8.7) [2]⊗ E1 →
(
T2 ⊔{0<2} [2]

)
⊗ E1 [2]⊗ E1 →

(
T2 ⊔{1<2} [2]

)
⊗ E1

are 0-surjective. Indeed, this follows since [1] ⊗ E1 → T2 ⊗ E1 is 0-surjective by Proposition 7.6.1
and since both operad maps (8.7) are by definition given by a pushout of this 0-surjective operad map
against the operad maps [1]⊗E1 → [2]⊗E1 induced by the inclusions {0 < 2} → [2] and {1 < 2} → [2],
respectively (see Observation 7.2.10).

Hence, it follows from Lemma 8.3.3 applied to the∞-category Op that our space of lifts is equivalent
to the space of lifts

(
T2 ⊔{0<2} [2]

)
⊗ E1 O|[2]⊗E1

(
T2 ⊔{1<2} [2]

)
⊗ E1

.

Therefore, without loss of generality, we may replace O by O|[2]⊗E1
and hence with Observation 8.3.2,

we may assume that

MulO(b, . . . , b; c)→ MulO(a, . . . , a; c)

are equivalences. It therefore follows from Proposition 7.8.2.(2) that

MulAlgE1 (O)(b, . . . , b; c)→ MulAlgE1O
(a, . . . , a; c)

are equivalences, and hence as in the proof of Corollary 8.3.5 that

PreBraidO(g)→ PreBraidO(g ◦ f)
are equivalences. □

Lastly, we record the following special case of Lemma 7.2.9 that prebraidings transport along ad-
junctions:

Corollary 8.3.7. Consider an adjunction between symmetric monoidal ∞-categories with (strongly)
symmetric monoidal left adjoint L

V W
L
⊥
R

and denote the induced adjunction between ∞-categories of E1-algebras by

(8.8) AlgE1
(V) AlgE1

(W).
LE1
⊥

RE1

Then, for any morphism of E1-algebras f : LE1a→ b in W, the induced map of spaces

PreBraidW(f)→ PreBraidV(RE1f)→ PreBraidV(RE1f ◦ ηa)
(constructed as in Lemma 7.2.9) is an equivalence, where η denotes the unit of the adjunction.

Proof. This is an immediate corollary of Lemma 7.2.9 applied to the adjunction (8.8). □
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8.4. Proof of the main theorem. We now prove the various truncatedness conditions appearing
in Corollaries 8.3.4 – 8.3.5 in the setting of Theorem 8.2.1, and assemble the obtained equivalences
between spaces of (pre-)braidings into a proof of our main theorem.

We first recall from Section 5 that faithful (∞, 2)-functors are completely determined by their induced
ordinary functors between homotopy 1-categories, with the following straight-forward corollary:

Corollary 8.4.1. Let n ≥ 0 and consider categories and functors in Cat(∞,2)

Y×n W Zfaithful ,

with faithfulness properties as indicated. Then, the map induced by applying h1

HomCat(∞,2)/W

(
Y×n,Z

)
→ HomCat(1,1)/h1W

(
h1Y×n, h1Z

)

is an equivalence of spaces.

Proof. Since h1 : Cat(∞,2) → Cat(1,1) is (strongly) symmetric monoidal, this follows directly from
Corollary 5.5.7. □

Moving to locally additive (∞, 2)-categories, recall from Notation 6.2.3 that we call a morphism

F : X → Y in Cat[addBZ
k ] surjective-on-objects-and-dominant-on-1-morphisms if its underlying (∞, 2)-

functor is surjective on objects and if for each pair of objects x, x′ ∈ X , every object of HomY(Fx, Fx
′)

is a retract of an object in the image of HomX (x, x′)→ HomY(Fx, Fx
′). The key technical statement

of this section is the following straight-forward application of the (surjective-on-objects-and-dominant-

on-1-morphisms, faithful)-factorization system on Cat[addBZ
k ] constructed in Corollary 6.2.4.

Proposition 8.4.2. Let n ≥ 0 and consider categories and functors in Cat[addBZ
k ]

X Y, Y⊗n W Z
surjective−on−objects

−and−dominant−on−1−morphisms faithful ,

with surjectivity and faithfulness properties as indicated (and where ⊗ denotes the tensor product in

Cat[addBZ
k ]). Then, the map induced by precomposition with the tensor power X⊗n → Y⊗n

HomCat[addBZ
k ]/W

(
Y⊗n,Z

)
→ HomCat[addBZ

k ]/W

(
X⊗n,Z

)

is an equivalence of spaces.

Proof. Since the (surjective on objects and dominant on 1-morphisms, faithful) factorization system

is compatible with the monoidal structure on Cat[addBZ
k ], as an n-fold tensor power of a functor in

the left class, the functor X⊗n → Y⊗n remains surjective on objects and dominant on 1-morphisms,
and hence the first map is an equivalence as a direct consequence of the orthogonality of surjective-on-
objects-and-dominant-on-1-morphisms and faithful functors. □

Below, we will repeatedly use the following simple lemma:

Lemma 8.4.3. Suppose we are given a commuting square of spaces

(8.9)

A B

C D

≃

f g

h

where the top horizontal map is an equivalence and where for every point c ∈ C, the induced map of
fibers fibc(f)→ fibh(c)(g) is an equivalence. Then, the induced map

Im(f)→ Im(g)

is an equivalence.
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Proof. The square (8.9) factors as

A B

Im(f) Im(g)

C D

.

Hence, we may without loss of generality assume that Im(f) = C and Im(g) = D, i.e. that f and g are
surjective on π0 and prove that in this case h is an isomorphism. Working fiberwise (and identifying
A with B via the given equivalence), it suffices to consider the case D = pt; in other words, given
a (−1)-connected map f : A ↠ C so that for all c ∈ C the map fibc(f) → A(= fibpt(A → pt)) is
an isomorphism, we need to show that C is contractible. This follows directly from the long exact
sequence of homotopy groups associated to the fiber sequence. □

Recall from (6.3) the adjunction

(8.10) Cat(∞,2) addBZ
k

LinZ
k,loc(−)

⊥
forget

where the right adjoint forgets additivity, k-linearity and the Z-action and the (strongly) symmetric

monoidal left adjoint LinZk,loc(−) sends an (∞, 2)-category C to the locally additive k-linear (∞, 2)-
category with local shifts with the same objects as C and hom-categories given by the linearization
Link(HomC(a, b)× Z) with free Z-action.

Corollary 8.4.4. Given categories and functors as in the assumptions of Theorem 8.2.1. Then, for
each n ≥ 0, the following hold:

(1) The space

Im
(
Sn → HomCat[stBZ

k ]/D

(
Kb

loc(C)⊗n,Kb
loc(C)

))

is 1-truncated, i.e. a 1-groupoid.
(2) The map of spaces

Im
(
Sn → HomCat[addBZ

k ]/D

(
C⊗n,Kb

loc(C)
))

−→ Im
(
Sn → HomCat[addBZ

k ]/D

(
LinZk,loc(B)⊗n,Kb

loc(C)
))

is an equivalence.
(3) The map of spaces

Im
(
Sn → HomCat(∞,2)/D

(
B×n,Kb

loc(C)
))

−→ Im
(
Sn → HomCat(1,1)/h1D

(
h1B×n, h1K

b
loc(C)

))

is an equivalence

We warn the reader that the functor Kb
loc(C)→ D is not faithful, and hence Propositions 8.4.1 and

8.4.2 do not apply directly.
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Proof. We first prove the part (2). Since the monoidal structure on C → Kb
loc(C) arises from adjunction,

the relevant maps from Sn all factor as:

Sn

HomCat[addBZ
k ]/D

(C⊗n, C) HomCat[addBZ
k ]/D

(
LinZk,loc(B)⊗n, C

)

HomCat[addBZ
k ]/D

(C⊗n,Kb
loc(C)) HomCat[addBZ

k ]/D

(
LinZk,loc(B)⊗n,Kb

loc(C)
)

Since C → D is faithful, it follows from Proposition 8.4.2 that the top horizontal map is an equivalence.
Moreover, for every f ∈ HomCat[addBZ

k ]/D
(C⊗n,Kb

loc(C)), the induced map between the fibers of the

vertical maps is

HomCat[addBZ
k ]

/Kb
loc

(C)
(C⊗n, C)→ HomCat[addBZ

k ]
/Kb

loc
(C)

(
LinZk,loc(B)⊗n, C

)
.

It follows from Proposition 4.3.2 that C → Kb
loc(C) is faithful. Hence, this map between fibers is also

an equivalence by Proposition 8.4.2. Therefore, it follows from Lemma 8.4.3 that the induced map
between the full images of the vertical maps is an equivalence, and hence so is also the induced map
between the full images of Sn.

The proof of part (2) is entirely analogous: The relevant maps from Sn all factor as

Sn

HomCat(∞,2)/D
(B⊗n, C) HomCat(1,1)/h1D

(h1B×n, h1C)

HomCat(∞,2)/D
(B⊗n,Kb

loc(C)) HomCat(1,1)/h1D

(
h1B×n, h1K

b
loc(C)

)

.

Since C → D is faithful by assumption, it follows from Corollary 8.4.1 that the top horizontal map is an
equivalence. The induced map between the fibers of the vertical maps at an f ∈ HomCat(∞,2)/D

(B⊗n,Kb
loc(C))

is given by

HomCat(∞,2)/Kb
loc

(C)
(B⊗n, C)→ HomCat(1,1)/h1Kb

loc
(C)

(
h1B×n, h1C

)

and hence is also an equivalence by Corollary 8.4.1 since also C → Kb
loc(C) is faithful. Therefore, it

follows from Lemma 8.4.3 that the induced map between the full images of the vertical maps is an
equivalence, and hence so is also the induced map between the full images of Sn.

Part (1) follows from combining parts (2) and (3): It follows from adjunction and monoidality of
Kb

loc(−) that
HomCat[stBZ

k ]/D

(
Kb

loc(C)⊗n,Kb
loc(C)

)
≃ HomCat[addBZ

k ]/D

(
C⊗n,Kb

loc(C)
)
.

Similarly, it follows from adjunction and monoidality of LinZk,loc(−) that

HomCat[addBZ
k ]/D

(
LinZk,loc(B)⊗n,Kb

loc(C)
)
≃ HomCat(∞,2)/D

(
B×n,Kb

loc(C)
)
.

Hence, combining the second and third statement, we find that

Im
(
Sn → HomCat[stBZ

k ]/D

(
Kb

loc(C)⊗n,Kb
loc(C)

))
≃ Im

(
Sn → HomCat(1,1)/h1D

(
h1B×n, h1K

b
loc(C)

))

which is — as a mapping space of Cat(1,1) — a 1-groupoid. □

Now we prove the main theorem:



112 YU LEON LIU, AARON MAZEL-GEE, DAVID REUTTER, CATHARINA STROPPEL, AND PAUL WEDRICH

Proof of Theorem 8.2.1. Given categories and functors as in part (2) of Theorem 8.2.1, we will prove
that the composite

BraidCat[stBZ
k ]/D

(Kb
loc(C))→ PreBraidCat(1,1)/h1D

(h1C → h1K
b
loc(C))(8.11)

→ PreBraidCat(1,1)/h1D
(h1B → h1K

b
loc(C))

is an equivalence. Note that part (1) of Theorem 8.2.1 then follows by taking B → C to be the identity
C → C (which clearly satisfies the required conditions). Then, the second statement follows since the
first map and the composite in (8.11) are equivalences, and hence so is the second map.

To prove that (8.11) is an equivalence, note that it follows from Lemma 6.3.1 that the condition on

B → C in the statement of Theorem 8.2.1.(2) equivalently asserts that LinZk,loc(B)→ C is surjective on
objects and dominant on 1-morphisms.

We now unpack (8.11) as a sequence of equivalences of spaces of (pre-)braidings:

BraidCat[stBZ
k ]/D

(Kb
loc(C))

≃ PreBraidCat[stBZ
k ]/D

(Kb
loc(C))

Cor. 8.3.4 applied via Cor. 8.4.4.(1) to the E1-algebra Kb
loc(C) in Cat[stBZ

k ]

≃ PreBraidCat[addBZ
k ]/D

(C → Kb
loc(C))

Cor. 8.3.7 applied to the adjunction Cat[addBZ
k ] Cat[stBZ

k ]
Kb

loc

⊥
forget

≃ PreBraidCat[addBZ
k ]/D

(LinZk,loc(B)→ Kb
loc(C))

Cor. 8.3.6 applied via Cor. 8.4.4.(2) to the E1-morphism LinZk,loc(B)→ C in Cat[addBZ
k ]

≃ PreBraidCat(∞,2)/D
(B → Kb

loc(C))

Cor. 8.3.7 applied to the adjunction Cat(∞,2) Cat[addBZ
k ]

LinZ
k,loc(−)

⊥
forget

≃ PreBraidCat(1,1)/h1D

(
h1B → h1K

b
loc(C)

)

Cor. 8.3.5 applied via Cor. 8.4.4.(3) to the functor h1 : Cat[add
BZ
k ]/D → Cat(1,1)/h1D

This completes the proof of Theorem 8.2.1. □
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Appendix A. Recollections, notation, and conventions regarding higher category
theory

In this paper, we make essential use of higher category theory and higher algebra. Here, we give a
rapid overview of the notions that are most important to this paper (with further references for the
interested reader).

A.1. From n-categories to (∞, n)-categories. As a starting point, let us recall the distinction
between strict and weak 2-categories [Bén+67]. In a strict 2-category, one requires associativity and
unitality of composition to hold up to equality. By contrast, in a weak 2-category, one only requires
these to hold up to natural isomorphism. Moreover, these natural isomorphisms are then required to
satisfy further coherence conditions.40 We can summarize the situation with the slogan that a weak
2-category is “a category that is enriched in 1-categories up to coherent natural isomorphism”. More
generally, one would like to define a weak n-category as “a category that is enriched in weak (n− 1)-
categories up to coherent natural isomorphism”. However, making this notion rigorous for higher values
of n – with all of the desired coherence conditions – becomes increasingly infeasible as n grows [GPS95].

Homotopy theory provides a remarkable alternative perspective on this problem, which leads to a
uniform and robust solution. To explain it, let us recall Grothendieck’s homotopy hypothesis: any
appropriate definition of “weak n-category” should have that its weak n-groupoids are equivalent (in a
suitably homotopical sense) to homotopy n-types (i.e. topological spaces with homotopy groups above
dimension n all vanishing, taken up to weak homotopy equivalence).41 Note that under the homotopy
hypothesis, natural isomorphisms on the categorical side correspond to homotopies on the topological
side. Hence, we arrive at an alternative proposed definition for “weak (n, 1)-categories”,42 namely as
categories that are enriched either in weak (n− 1)-groupoids up to coherent natural isomorphism or in
homotopy n-types up to coherent homotopy. In the limit, we find that “weak (∞, 1)-categories” should
be categories that are enriched in (arbitrary) homotopy types up to coherent homotopy.

Before continuing our discussion, we pause to note a few conventions. First of all, just as we may refer
to 1-categories simply as “categories”, we will also refer to (∞, 1)-categories simply as “∞-categories”.
Moreover, given that we will only be interested in “weak” notions, we usually leave this term implicit
henceforth.

Now, there exist a number of robust models for ∞-categories (i.e. categories enriched in homotopy
types up to coherent homotopy), although all are known to be equivalent (in a suitably homotopical
sense) [Toë05]. The most developed is that of quasicategories, thanks to Lurie’s foundational work
[Lur09], which we take as a primary reference. However, we stress that throughout this paper we
work in an entirely model-independent fashion: we only manipulate ∞-categories in a manner that
makes no reference to a specific model (so e.g. we never make reference to the individual simplices of
a quasicategory).

The theory of ∞-categories reifies the limiting case of Grothendieck’s homotopy hypothesis: among
∞-categories, the ∞-groupoids are equivalent to homotopy types. We refer to such objects alternately
as ∞-groupoids or as spaces, depending on the context. We write Cat∞ for the ∞-category of (small)
∞-categories (see Appendix A.6 for a brief discussion of set-theoretic matters), and we write S ⊂ Cat∞
for the full subcategory of spaces.

40For instance, the associativity isomorphisms must satisfy the pentagon axiom, which articulates a coherence condi-
tion among the five possible ways of composing a sequence of four composable morphisms.

41Indeed, the homotopy hypothesis can be taken as one motivation (of many) for a theory of weak n-categories in the
first place: it can be seen directly that strict 3-groupoids do not model all homotopy 3-types [Sim98].

42Recall that for 0 ≤ k ≤ n, the term “(n, k)-category” refers to an n-category whose i-morphisms are all invertible
for all i > k. So an (n, n)-category is just an n-category (without further conditions), while an (n, 0)-category is an

n-groupoid.
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We can now return to the problem of defining weak n-categories. The essential observation is
as follows: all of the desired coherence conditions articulate equivalences between various composite
operations. Thus, in order to obtain a robust theory of (∞, n)-categories, it suffices to have a robust
theory of ∞-categories enriched in a given one: then, we can recursively define (∞, n)-categories to
be ∞-categories that are enriched in the (∞, 1)-category of (∞, n − 1)-categories. As we explain
further in Appendix A.10, such a robust formalism is provided by [GH15]. Hence, writing Cat[V] for
the ∞-category of V-enriched ∞-categories, we may recursively define the (∞, 1)-category of (∞, n)-
categories as Cat(∞,n) := Cat[Cat(∞,n−1)], the∞-category of∞-categories enriched in (small) (∞, n−
1)-categories; as a base case we define Cat(∞,0) := S, and as a consistency check we have an equivalence
Cat(∞,1) := Cat[Cat(∞,0)] ≃ Cat∞ [GH15, Thm. 5.4.6]. As explained in Appendix A.10, for k ≥ 0,
Cat(∞,k) is Cartesian presentably symmetric monoidal. Among the (∞, n)-categories, weak (n, n)-
categories can then be defined simply as those satisfying certain discreteness conditions [GH15, § 6.1].

In fact, this definition ultimately affords an (∞, n + 1)-category (as opposed to just an (∞, 1)-
category) of (∞, n)-categories, using the fact that Cat(∞,n) is Cartesian closed [Rez10]: for any (∞, n)-
categories C and D we have an (∞, n)-category Fun(C,D) of functors between them, which is uniquely
characterized by the universal property that we have a natural equivalence

HomCat(∞,n)
(E ,Fun(C,D)) ≃ HomCat(∞,n)

(E × C,D)

of hom-spaces for any (∞, n)-category E ∈ Cat(∞,n).

A.2. Some basic notions in ∞-category theory. Here we highlight a few ∞-categorical notions
that we use repeatedly throughout this paper. We make no effort to give a comprehensive account,
and instead refer the interested reader to [Lur09] for a more thorough treatment. Indeed, a remarkable
number of notions in ordinary category theory port over to ∞-category theory with minimal modifi-
cation (though see Appendix A.3 for a prominent non-example, and see Appendix A.2.6 for another
non-example).

A.2.1. Basic notions. Broadly speaking, the fundamental role played by sets in ordinary category
theory is played by spaces in ∞-category theory. In particular, as noted in Appendix A.1, an ∞-
category C is enriched in spaces (i.e. ∞-groupoids): for any pair of objects c, d ∈ C we obtain a space
HomC(c, d) ∈ S. These hom-spaces admit a composition law, which is associative and unital up to
coherent homotopy.

Any ∞-category has an associated ordinary 1-category h1C, called its homotopy category , with the
same objects as C and hom-sets Homh1C(c, d) := π0HomC(c, d), i.e. identifying 1-morphisms in C if
there is an invertible 2-morphism between them.

A presheaf on an ∞-category C is a functor Cop → S. These assemble into the ∞-category P(C) :=
Fun(Cop,S), which receives a fully faithful Yoneda embedding C HomC(=,−)−−−−−−−→ P(C) [Lur09, Prop. 5.1.3.1].

As a matter of terminology, we interchangeably use the terms “isomorphism”, as in ordinary category
theory and “equivalence” (in order to emphasize that one is working in a higher-categorical context).

In ordinary categories, objects characterized by universal properties (e.g. limits and colimits) are
unique up to unique isomorphism when they exist: said differently, the collection of objects satisfy-
ing the characterization assemble into an empty or contractible groupoid. In ∞-categories, objects
characterized by a universal property instead assemble into an empty or contractible ∞-groupoid. For
instance, an object c ∈ C is called initial if for every d ∈ C the space HomC(c, d) is contractible, and
the initial objects of C assemble into an empty or contractible ∞-groupoid.

In classical category theory, the term “unique up to unique isomorphism” is sometimes replaced by
the shorter term “essentially unique”. The word “essentially” here is meant to indicate that object
is not literally unique (e.g. there exist many terminal objects in the category Set of sets (namely the
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singletons)), but rather that it is unique in the appropriate category-theoretic sense. However, in ∞-
category theory one is emphatically never interested in uniqueness beyond that in the ∞-categorical
sense (i.e. parametrized by a contractible ∞-groupoid), and so we generally omit all technical uses

of the word “essentially”. Relatedly, we will refer to a functor C F−→ D simply as surjective (rather
than “essentially surjective”) if for every object d ∈ D there exists an object c ∈ C and an equivalence
F (c) ≃ d.

A.2.2. Monomorphisms and subcategories. A general pattern in higher category theory is that one
must keep track of “higher coherence data” (see e.g. Appendix A.3). Thus, it is notable when a given
construction does not require this. Given a construction that a priori might involve coherence data,
we say that the data is in fact (merely) a condition in order to indicate that such data is unique if it
exists (i.e. that the ∞-category of such assembles into an empty or contractible ∞-groupoid).

Most fundamentally, given a space X and a subset of its path components, it is merely a condition
for a point x ∈ X to lie in one of these. In fact, the inclusions of path components are precisely the

monomorphisms in the ∞-category of spaces: given an inclusion of path components Y
i
↪−→ X, it is

merely a condition for any map Z → X to factor through it.
This notion generalizes: we say that a morphism c→ d in an∞-category C is a monomorphism if it

is merely a condition for any morphism e→ d to factor through it.43 This is equivalent to the condition
that the resulting morphism HomC(−, c)→ HomC(−, d) in P(C) is a componentwise monomorphism.

As a notable example, the monomorphisms in Cat∞ are precisely the functors that are fully faithful
on equivalences and monomorphisms on all hom-spaces.44 We reserve the term subcategory for (the
image of) a monomorphism (in Cat∞, or more generally in Cat[V] (again see Appendix A.10)).

As another notable example, it is merely a condition for a morphism in an ∞-category to be an
equivalence. Said differently, the functor [1] → [1]gpd ≃ pt is an epimorphism in Cat∞ (see §§A.2.4-
A.2.5 for an explanation of the notation).

A.2.3. Adjunctions. It is merely a condition for a functor C F−→ D to be a (say) left adjoint: its space
of right adjoints is either empty or contractible. First of all, a pointwise right adjoint to F at an object

d ∈ D is a pair of an object c ∈ C and a morphism F (c)
εd−→ d such that for every c′ ∈ C the composite

HomC(c
′, c)

F−→ HomD(F (c
′), F (c))

εd−→ HomD(F (c
′), d) is an equivalence. Equivalently, this is the data

of a representing object for the presheaf Cop HomD(F (−),d)−−−−−−−−−−→ S (which by definition comes equipped with
the data of a universal element εd ∈ HomD(F (c), d) witnessing it as such). Then, a right adjoint exists
if and only if a pointwise right adjoint exists at all objects of D; in this case, the right adjoint is the

(necessarily unique) factorization of the functor D HomD(F (=),−)−−−−−−−−−−→ P(C) through the Yoneda embedding.
(See Appendix A.5 for an alternative description of ∞-categorical adjunctions.)

As a basic example, there exists a right adjoint S ι0←− Cat∞ to the inclusion, which carries an ∞-
category C to its maximal subgroupoid C≃ (which is obtained by discarding all of its noninvertible
morphisms).

43This is equivalent to the condition that the commutative square

c c

c d

idc

idc

is a pullback square. (In particular, if a functor commutes with pullbacks then it preserves monomorphisms.)
44This claim is easy to check in the model for ∞-categories given by complete Segal spaces [Rez01].
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A.2.4. Simplicial objects. We write ∆ for the simplicial indexing category (the full subcategory of Cat∞
on the finite nonempty totally ordered sets), and for any n ≥ 0 we write [n] := {0 < 1 < · · · < n} ∈ ∆

for the indicated standard object. A simplicial object in an ∞-category C is a functor ∆op X−→ C; we
use the term geometric realization to refer to its colimit, and denote this by |X| := colim∆op(X) ∈ C.45

A.2.5. Localizations. Given an ∞-category C and a collection W of morphisms in C (often assumed
to be those defining a subcategory of C), the localization of C at W is the target of the initial functor
C → C[W−1] that carries all morphisms in W to equivalences. As an extreme example, the∞-groupoid

completion of C is its localization at all of its morphisms; this defines a left adjoint Cat∞
(−)gpd

−−−−→ S
to the inclusion. More generally, we can identify the localization at (the morphisms in) a subcategory
W ⊆ C as the pushout

W C

Wgpd C[W−1]

.

A special case of localization is given by a reflective localization adjunction, i.e. an adjunction

(A.1) C D
L
⊥
R

in which the right adjoint is fully faithful. In this case, writingW ⊆ C for the subcategory of morphisms
in C that are carried to equivalences in D, the left adjoint witnesses D as the localization C[W−1]. In
this case, R can be characterized as the inclusion of the full subcategory of objects of C that are local
with respect to the morphisms in W, i.e. those c ∈ C such that for every d → e in W the morphism
HomC(d, c) ← HomC(e, c) is an equivalence [Lur09, Prop. 5.5.4.2].46 Of course, dual remarks pertain
to coreflective localization adjunctions, i.e. adjunctions in which the left adjoint is fully faithful.

Note that we might obtain the same localization even if we change the collection W. For instance, it
is unnecessary to invert equivalences (since they are already invertible), and for any pair of composable
morphisms f and g inverting any two of f , g, and gf automatically inverts the third (since equivalences
have the two-out-of-three property). This observation plays a key role in the theory of accessible
localizations of presentable ∞-categories (see Appendix A.7).

A.2.6. Connected categories versus weakly contractible ∞-categories. While certain results in ordinary
category theory refer to connected categories (i.e. those whose groupoid completions are connected),
their∞-categorical analogs generally instead refer to weakly contractible ∞-categories (i.e. those whose
∞-groupoid completions are contractible). For instance, the forgetful functor Cc/ → C commutes with

(and detects) weakly contractible colimits.47

A.3. Higher coherence. Here we briefly illustrate the primary operational difference between working
in ordinary categories and working in∞-categories, namely that in the latter case one must keep track
of higher coherence data.

Let M be a monoid (i.e. a set equipped with an associative and unital binary operation). Then, the
data of M is entirely recorded by its bar construction, a simplicial set Bar(M) with Bar(M)n :=M×n

whose face and degeneracy maps respectively record the product and unit of M . Indeed, M is already

45The classical notion of geometric realization that carries a simplicial set to a topological space is a homotopy colimit

(of the corresponding levelwise discrete simplicial topological space), which provides a concrete model for the colimit in
S of the corresponding levelwise discrete simplicial space. So, these two uses of the term are spiritually compatible.

46If C admits a terminal object ptC ∈ C, then this locality condition is equivalent to the orthogonality relation

(d→ e)⊥(c→ ptC) (see Definition B.1.1).
47As a non-example, binary coproducts in Cc/ are computed by pushouts in C.
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completely specified by the restriction ∆op
≤3 ↪→ ∆op Bar(M)−−−−−→ Set; note that the associativity of its

multiplication is guaranteed by the commutativity of a certain square

(A.2)

[3] [2]

[2] [1]

of face maps in ∆op (whose morphisms all correspond to endpoint-preserving injections in ∆). Alto-
gether, we can identify monoids as a full subcategory either of Fun(∆op,Set) or of Fun(∆op

≤3,Set).

By contrast, such a restriction – or more generally, the restriction to ∆op
≤n ⊂ ∆op for any n – is

not possible in the context of ∞-category theory. As a fundamental example, an ∞-monoid M (i.e.

an ∞-categorical monoid object in S) is completely specified by its bar construction ∆op Bar(M)−−−−−→ S
(whose face and degeneracy maps likewise record its product and unit). Heuristically, we may think
of relations among various morphisms and their composites in ∆op as recording coherence data for the
muliplication of M , inasmuch as the functor Bar(M) carries these equalities in the hom-sets of ∆op

only to “homotopy-coherent equalities” (i.e. higher equivalences) in S.48 Because S is an ∞-category
(and not an (n, 1)-category for any n <∞, i.e. its hom-spaces can have homotopy groups in arbitrarily
high dimensions), these coherence data never become unique or vacuous after some finite stage.

We note for future reference that ∞-monoids can be identified (via their bar constructions) as the
full subcategory of Fun(∆op,S) on those simplicial spaces X satisfying a Segal condition, namely that
for every n ≥ 0 a certain natural morphism Xn → (X1)

×n is an equivalence.
We generally suppress the modifier “homotopy coherently” (e.g. of the adjectives “associative” and

“unital”), unless we specifically mean to draw attention to it.

A.4. Straightening and unstraightening. A fundamental tool in∞-category theory is the straight-
ening and unstraightening equivalence, as we now briefly describe. 49

Fix an ∞-category B and a functor B F−→ Cat∞. Then, the (coCartesian) unstraightening of F

(a.k.a. its (covariant) Grothendieck construction) is an object (E p−→ B) ∈ (Cat∞)/B that may be
described heuristically as follows:

• an object of E is given by a pair of an object b ∈ B and an object x ∈ F (b);
• a morphism (b, x) → (c, y) in E is given by a morphism b

f−→ c in B along with a morphism

F (f)(x)
α−→ y in F (c).

(Of course, the images under p of these data are simply b and f , respectively.) Such a morphism
(f, α) in E is called (p-)coCartesian if α is an equivalence. Observe that these satisfy a universal

property: if e
φ−→ f in E is p-coCartesian, then for any g ∈ Ep(f) we have an equivalence HomE(f, g) ≃

HomE(e, g)×HomB(p(e),p(g)) {p(φ)}.
Conversely, a functor E p−→ B is called a coCartesian fibration if for every pair of an object e ∈ E

and a morphism p(e)
f−→ b in B, the morphism f admits a coCartesian lift with source e. In this

case, p is the unstraightening of a functor B F−→ Cat∞, whose values are given by the fibers F (b) ≃ Eb
and whose functoriality is implicitly specified by the coCartesian morphisms (in essence because the
Yoneda embedding is fully faithful). We refer to F as the straightening of p, and to its functoriality

48For instance, the commutative square (A.2) selects an associator for M (i.e. a path in HomS(M
×3,M)), and there-

after we can locate the pentagon axiom as the image in HomS(M
×4,M) of the (tautological and unique) nullhomotopy

of a certain pentagon in Hom∆op ([4], [1]) ∈ Set ⊂ S.
49See [Maz19] for a more leisurely description.
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F (b)
F (f)−−−→ F (c) for a morphism b

f−→ c in B as the coCartesian monodromy functor of E associated to
f .

The coCartesian fibrations over B define a (generally non-full) subcategory coCartB ⊆ (Cat∞)/B,
whose morphisms are those functors over B that preserve coCartesian morphisms. Altogether, by
[Lur09, Thm. 3.2.0.1], straightening and unstraightening define inverse equivalences

Fun(B,Cat∞) ≃ coCartB ,

under which precomposition with a functor B′ → B corresponds to pullback therealong.

A similar but dual story applies in the case of a functor Bop F−→ Cat∞: this now has a (Cartesian)
unstraightening (a.k.a. its (contravariant) Grothendieck construction), giving an object (E → B) ∈
(Cat∞)/B admitting a dual description. Altogether, we obtain an analogous equivalence

Fun(Bop,Cat∞) ≃ CartB .

A.5. Adjunctions revisited. An adjunction of∞-categories can be defined as a functor E → [1] that
is both a coCartesian fibration and a Cartesian fibration. Its coCartesian unstraightening defines the

left adjoint E0 L−→ E1, while its Cartesian unstraightening defines the right adjoint E0 R←− E1, and the uni-
versal properties of coCartesian and Cartesian morphisms yield natural equivalences HomE0

(e,R(f)) ≃
HomE(e, f) ≃ HomE1

(L(e), f) for any e ∈ E0 and f ∈ E1.
We define a morphism of adjunctions to be a morphism in coCart[1] ∩ Cart[1].

50 In particular, a
morphism of adjunctions determines a commutative square in Cat∞ after omitting either both left
adjoints or both right adjoints.

Given a commutative square in Cat∞ in which two parallel functors are both (say) left adjoints,
passing to their right adjoints we obtain a canonical laxly-commutative square (i.e. one that commutes
up to a specified natural transformation), and it is merely a condition for this to be invertible so
that the original square defines a morphism adjunctions [Hau+23].51 Of course, this is nothing but
the condition that the morphism in coCart[1] specified by the original square lies in the subcategory
coCart[1] ∩ Cart[1]. Dual remarks apply if the two parallel functors are instead both right adjoints.

A.6. Set-theoretic considerations. In order to deal with set-theoretic issues, we systematically use
the device of Grothendieck universes (see e.g. [Lur09, § 1.2.15]). Specifically, we fix a triple of strongly
inaccessible cardinals κ0 < κ1 < κ2. The sets of cardinality < κi for 0 ≤ i ≤ 2 will be called κi-small
and they form Grothendieck universes U0 ∈ U1 ∈ U2. Likewise, a category is called κi-small if the
sets of isomorphism classes of objects and the homotopy groups of morphisms spaces are of cardinality
< κi. We refer to κ0-small objects as small, to κ1-small objects as large, and to κ2-small objects as
huge (and the latter play almost no role in in our work). So for instance, the ∞-category Cat∞ of
small ∞-categories is large, as is the ∞-category S of (small) spaces.

We occasionally write e.g. Ĉat∞ to refer to the huge ∞-category of large ∞-categories. Its main
use is that it contains the∞-category of presentable ∞-categories (see Appendix A.7). We often prove

results for Cat∞ and then apply them to Ĉat∞ (which is easily justified by a change of Grothendieck
universe) in order to discuss specializations to presentable ∞-categories.

We may sometimes emphasize smallness (e.g. of a set or of an ∞-category). On the other hand, we
may also omit the word “small” for brevity; for instance, when we say that an ∞-category admits all
colimits we certainly mean that it admits all small colimits.

We generally refer to a large set as a “class” (and to a class that is not small as a “proper class”).
However, in related contexts we will have occasion to contemplate large spaces, and rather than belabor
the distinction we simply also refer to these as “classes”.

50These are also frequently referred to as “Beck–Chevalley squares”.
51This is frequently referred to as a “Beck–Chevalley condition” on the original commutative square.
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Relatedly, in the most invariant terms, given an ∞-category C, “a set of objects of C” refers to a set

S equipped with a functor S
F−→ C. We say that an object of C lies in the set if it is in the image of

F (up to equivalence). Said differently, when we refer to a set of objects of C, we generally intend to
implicitly refer to its image (a subgroupoid of C). Note that if S is small and C is locally small, then
the image of S in C is also small; hence, in such cases this implicit passage to images does not change
size.

A.7. Presentable ∞-categories. Many (∞-)categories of lasting interest are not small, but are nev-
ertheless “controlled by small data” – namely, they are presentable. By definition, an ∞-category C is
presentable if it admits all small colimits and moreover there exists some regular cardinal κ such that C
is the completion of its full subcategory Cκ ⊆ C of κ-compact objects under κ-filtered colimits. For this
we recall that a κ-filtered colimit means a colimit indexed by a κ-filtered category, i.e. an ∞-category,
in which every diagram of cardinality < κ has a cocone, and an object is called κ-compact if the
associated representable functor preserves κ-filtered colimits. If we can take κ to be the cardinality ω
of the natural numbers, we say that C is compactly generated (as ω-compact objects are generally just
called “compact objects”).

An extremely convenient feature of presentable∞-categories is their adjoint functor theorem [Lur09,
Cor. 5.5.2.9]: a functor between presentable ∞-categories is a left adjoint if and only if it preserves
small colimits, and it is a right adjoint if and only if it is accessible (i.e. preserves κ-filtered colimits
for some κ) and preserves small limits. Presentable ∞-categories naturally define two subcategories

PrL ⊂ Ĉat∞ ⊃ PrR

of the huge ∞-category of large ∞-categories, in which the morphisms are the left (resp. right) adjoint

functors. Evidently, passing to adjoints defines an equivalence PrL ≃ (PrR)op. These actually define

(∞, 2)-categories (by taking all natural transformations as 2-morphisms), and we write FunL(−,−)
and FunR(−,−) for their respective hom-(∞, 1)-categories.

An accessible localization is by definition a reflective localization among presentable ∞-categories.

The left adjoint of an accessible localization is a localization not just in Ĉat∞ but also in PrL [Lur09,
Prop. 5.5.4.20]. Moreover, given any accessible localization

C D
L
⊥
R

,

the left adjoint L witnesses D as the localization C[S−1] for some small set S of morphisms in C, and
hence R is the fully faithful inclusion of the subcategory of S-local objects [Lur09, Prop. 5.5.4.1].

Presentable ∞-categories admit presentations by generators and relations, in the following sense.
First of all, for any small∞-category C ∈ Cat∞, its∞-category P(C) of presheaves is presentable. This
is the free presentable ∞-category on C: for any D ∈ PrL, restriction along the Yoneda embedding
defines an equivalence Fun(C,D) ∼←− FunL(P(C),D) [Lur09, Thm. 5.1.5.6]. And then, any presentable
∞-category is an accessible localization of P(C) for some C ∈ Cat∞ [Lur09, Thm. 5.5.1.1].

There exists a symmetric monoidal structure on PrL, which is characterized by the fact that mor-
phisms C ⊗ D → E in PrL (i.e. left adjoint functors) are equivalent to functors C × D → E that are
bicocontinuous (i.e. cocontinuous (or equivalently, left adjoints) separately in each variable), whose unit

object is S ≃ P(pt) ∈ PrL. A presentably (symmetric) monoidal ∞-category is a (resp. commutative)

algebra object in (PrL,⊗), i.e. a presentable ∞-category equipped with a (resp. symmetric) monoidal
structure that is cocontinuous separately in each variable.52 Most (symmetric) monoidal presentable

52In any symmetric monoidal ∞-category the unit object is canonically a commutative algebra object, and here this
recovers the Cartesian symmetric monoidal structure on S (which is a presentably symmetric monoidal structure).
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∞-categories of lasting interest (e.g. Cat(∞,n) (and in particular S and Cat∞) and Sp) are presentably
(resp. symmetric) monoidal.

A.8. Some basics of ∞-operads. Here we briefly discuss some relevant features of the theory of
∞-operads introduced in [Lur17, § 2].

A.8.1. Basic notions. The notion of an ∞-operad is an ∞-categorical version of the theory of colored
operads. A colored operad consists of a set ι0O of colors along with for every finite set {Xi ∈ ι0O}i∈I

of colors and every color Y ∈ ι0O a set MulO({Xi}i∈I , Y ) of multimorphisms from {Xi}i∈I to Y , which
altogether must be equipped with a associative and unital composition law.53 In particular, the unary
multimorphisms (i.e. those with |I| = 1) define a category O of colors (whose set of objects is ι0O).

We now give a hint of the main definition. An ∞-operad O is an ∞-category O⊗ (called the ∞-
category of operators of O) equipped with a functor O⊗ → Fin∗ to the category of finite pointed sets
satisfying certain conditions. We immediately introduce the notation n+ := {1, 2, . . . , n}+ ∈ Fin∗ for

the indicated standard object, as well as the notation O := O⊗
1+

for the indicated fiber. We refer

to O as the ∞-category of colors of O (or sometimes as its underlying ∞-category, for reasons that
will be explained shortly). We will sometimes abuse notation and denote the underlying ∞-category
O of an ∞-operad O simply also by O. The crux of the definition of an ∞-operad is that O⊗

satisfies a sort of “fiberwise” Segal condition which implies that for every n ≥ 0 there is a natural
equivalence O⊗

n+
≃ O×n, as well as an “internal” Segal condition which implies that for every pair of

objects X := (X1, . . . , Xm) ∈ O×m ≃ O⊗
m+

and Y := (Y1, . . . , Yn) ∈ O×n ≃ O⊗
n+

, we have a natural

equivalence

HomO⊗(X,Y ) ≃
⊔

f∈HomFin∗ (m+,n+)

n∏

i=1

HomO⊗({Xj}j∈f−1(i), Yi) .

An ordinary colored operad O′ defines an∞-operad O with HomO⊗({Xi}i∈I , Y ) := MulO′({Xi}i∈I , Y ).
As a result, we also write MulO({Xi}i∈I , Y ) := HomO⊗({Xi}i∈I , Y ) for the hom-spaces in an∞-operad
O whose targets lies in O, and refer to their points as multimorphisms. Altogether,∞-operads assemble
into a (non-full) subcategory Op ⊂ (Cat∞)/Fin∗ : in essence, morphisms of ∞-operads are required to
respect the Segal condition equivalences. In fact, allowing all 2-morphisms in (Cat∞)/Fin∗ endows Op
with the structure of an (∞, 2)-category, whose hom-(∞, 1)-categories we denote by HomOp(−,−).

We say that an ∞-operad O is single-colored if its ∞-category of colors O is contractible. In this
case, we may write ∗ ∈ O for the unique point, and we write O(n) := MulO({∗}i∈{1,...,n}, ∗) for the
unique space of n-ary multimorphisms in O.

A.8.2. Key examples. Perhaps the most important family of examples of ∞-operads is the sequence
E0 → E1 → · · · → E∞. These are single-colored, with the space Ek(n) of n-ary operations given by
(the underlying space of) the topological space of configurations of n disjoint points in Rk.54 The
above maps are induced by the standard embeddings R0 ↪→ R1 ↪→ · · · ↪→ R∞. We note that E1 and
E∞ are respectively the ∞-operads underlying the colored operads that parametrize associative and
commutative algebras (and in particular, their spaces of multimorphisms are discrete). Hence, we also
write Assoc := E1 and Comm := E∞ and respectively refer to these as the associative and commutative

∞-operads. In fact, Comm is simply the identity functor Comm := E∞ ≃ Fin∗
id−→ Fin∗, and defines a

terminal object of Op.

53The usage of an abstract finite set I here (as opposed to {1, . . . , n}) is convenient since it naturally builds in the

relevant symmetric group actions.
54This topological space is homotopy equivalent to that of framed embeddings (Rk)⊔n ↪→ Rk, under which composition

of multimorphisms in Ek corresponds to composition of framed embeddings.
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Another illustrative example is the∞-operad LM associated to the two-colored operad parametrizing
pairs of an associative algebra object along with a left module over it. We will return to LM in
Appendix A.9.

It will occasionally be useful for us to refer to the single-colored ∞-operad Triv, which has no n-ary
multimorphisms for n ̸= 1 and the only 1-ary morphism is the identity morphism. Given an ∞-operad
O, we write OTriv := O ×Comm Triv.

A.8.3. O-monoidal∞-categories. Given an∞-operad O, an O-monoidal∞-category C is a coCartesian
fibration C⊗ → O⊗ satisfying analogous Segal conditions, which are equivalent to the condition that
the composite C⊗ → O⊗ → Fin∗ is also an ∞-operad. In particular, an O-monoidal ∞-category
can be equivalently specified by the straightening O⊗ → Cat∞ of this coCartesian fibration. 55 We
often abuse the notation by denoting an O-monoidal ∞-category by its source operad C. Altogether,
O-monoidal ∞-categories define a full subcategory AlgO(Cat∞) ⊆ coCartO⊗ ≃ Fun(O⊗,Cat∞). As
special cases, we write Alg(Cat∞) := AlgAssoc(Cat∞) for the ∞-category of monoidal ∞-categories
and CAlg(Cat∞) := AlgComm(Cat∞) for the ∞-category of symmetric monoidal ∞-categories. The
restricted coCartesian fibration C → O (or simply its source) may be thought of as the “underlying
∞-category” of C, although this is most immediately meaningful when O is single-colored.

An∞-category that admits finite products canonically upgrades to a Cartesian symmetric monoidal
∞-category. We note that it is merely a condition for a symmetric monoidal∞-category to be Cartesian
symmetric monoidal. Dual remarks apply in the case of finite coproducts.

A.8.4. O-algebra objects. Given an O-monoidal ∞-category C, an O-algebra object in C is a section of
the structure map C → O in Op. These assemble into an ∞-category AlgO(C) := HomOp/O

(O, C). As
special cases, we write Alg(C) := AlgAssoc(C) for the ∞-category of (associative) algebra objects in C
and CAlg(C) := AlgComm(C) for the ∞-category of commutative algebra objects in C.

More generally, given a morphism P p−→ O in Op, we analogously define the∞-category AlgP/O(C) :=
HomOp/O

(P, C) of P-algebras in C (relative to p). Equivalently, the base change p∗C → P defines the

underlying P-monoidal ∞-category of C ∈ AlgO(Cat∞), and we have AlgP/O(C) ≃ AlgP(p
∗C). For

example, there is a natural morphism LM → Assoc, and so we can contemplate LM-algebras in any
monoidal ∞-category C ∈ Alg(Cat∞). Note that when O = Fin∗ we also write this as AlgP(C). 56

Altogether, for an O-monoidal ∞-category C we obtain a functor

(Op/O)
op

Alg(−)/O(C)
−−−−−−−−→ Cat∞ ,

whose functoriality is given by precomposition.
As a matter of terminology, it is common to refer to O-algebra objects in a Cartesian symmetric

monoidal ∞-category as O-monoids (e.g. in S or Cat∞). In particular, O-monoidal ∞-categories are
indeed O-monoids in Cat∞. When referring to notions in spaces, one generally simply prepends “∞-”
to the classical terms, so e.g. the objects of Alg(S) may be referred to as “∞-monoids”.

Of particular relevance to this paper is the case O = E2, and we generally use the term braided
in place of the prefix “E2-”: in particular, a braided monoidal (∞, 2)-category is an E2-algebra in
Cat(∞,2). Indeed, a braided monoidal∞-category in the classical sense defines an E2-monoid in Cat∞.

55This latter perspective is effectively a generalization of the bar construction indicated in Appendix A.3, and it

further generalizes to O-algebra objects in any Cartesian symmetric monoidal ∞-category [Lur17, § 2.4.2] (which notion
is defined shortly).

56Hence, this framework adheres closely to the “microcosm/macrocosm principle”: it is precisely an O-monoidal
structure on an ∞-category that allows us to contemplate O-algebra objects therein. In particular, one can make sense

of O-algebra objects for any ∞-operad O inside of a symmetric monoidal ∞-category (since Comm ∈ Op is terminal).



122 YU LEON LIU, AARON MAZEL-GEE, DAVID REUTTER, CATHARINA STROPPEL, AND PAUL WEDRICH

A.8.5. O-algebras of symmetric monoidal ∞-categories. Let O, C be ∞-operads, then the ∞-category
AlgO(C) has the structure of an ∞-operad [Lur17, Ex. 3.2.4.4]. From now on, we will denote the
∞-operad of O-algebras in C by AlgO(C), and the underlying ∞-category of O-algebra by AlgO(C), or
just AlgO(C) if clear from context. When the∞-operad C is in fact a symmetric monoidal∞-category,
i.e. C⊗ → Fin∗ is a coCartesian fibration, then so is the∞-operad AlgO(C). Furthermore, let X ∈ O be
a color, the evaluation functor eX : AlgO(C)→ C, which takes an O-algebra to its underlying X-object,

is symmeric monoidal [Lur17, Prop. 3.2.4.3]. More generally, for any map of ∞-operads O′ → O, the
pullback functor on algebras AlgO(C)→ AlgO′(C) is a symmetric monoidal functor.

A.8.6. Symmetric monoidal structure on overcategories. Let C be a symmetric monoidal ∞-category
and A ∈ CAlg(C) be a commutative algebra object therein. Then, there exists a symmetric monoidal
structure on the overcategory C/A ([Lur17, Thm. 2.2.2.4]), universally characterized (cf. [Lur17, Def.
2.2.2.1]) by the following equivalence of ∞-categories for any ∞-operad O

AlgO(C/A) ≃ AlgO(C)/A,

where on the right hand side we A is equipped with the O-algebra structure induced by the terminal
map of operads O⊗ → Comm.

A.8.7. Boardman-Vogt tensor product and Dunn additivity. The ∞-category Op of ∞-operads itself
carries a symmetric monoidal structure, called the Boardman-Vogt tensor product uniquely character-
ized57 by giving rise to an equivalence of ∞-operads for all ∞-operads O,O′ and P:

(A.3) AlgO(AlgO′(P)) ≃ AlgO⊗O′(P).

Equivalently, the Boardman-Vogt tensor product has Alg−(−) as its internal hom.
A fundamental theorem in the theory of ∞-operad is Dunn’s additivity theorem [Lur17, Thm.

5.1.2.2]: for n,m ≥ 0, there is an equivalence of∞-operads En⊗Em ≃ En+m. In particular, using A.3,
an En+m-algebra in an ∞-operad O is equivalent to an En-algebra in the ∞-operad of Em-algebras in
O.

A.8.8. Laxly O-monoidal functors. If C and D are O-monoidal ∞-categories, then a morphism C → D
in Op/O is called a laxly O-monoidal functor.58 Let us denote the coCartesian fibrations C⊗ → O⊗,

D⊗ → O⊗ by p and q, then an O-monoidal functor is a laxly O-monoidal functor that takes p-
coCartesian morphisms in C⊗ to q-coCartesian morphisms in D⊗.

Whereas an O-monoidal functor respects the O-monoidal structure up to coherent natural equiv-
alence, a laxly O-monoidal functor C → D respects it only up to certain (generally noninvertible)
coherent natural transformations, which nevertheless suffices to obtain an induced functor AlgO(C)→
AlgO(D) on ∞-categories of O-algebra objects (simply by composition in Op/O). For instance, given

a laxly monoidal functor C F−→ D and an algebra object A ∈ AlgE1
(C), we obtain structure maps

F (A) ⊗D F (A) → F (A ⊗C A)
F (µA)−−−−→ F (A) and 1D → F (1C)

F (ηA)−−−−→ F (A) giving the multiplication
and unit of F (A) ∈ Alg(D).

Furthermore, AlgO(−) takes (laxly) symmetric monoidal functors between symmetric monoidal ∞-
categories to (laxly) symmetric monoidal functors.

57This follows from the explicit construction of the ∞-operad AlgO(P) in [Lur17, Const. 3.2.4.1]
58This is also technically a C-algebra object in D (relative to O), although we find the present terminology to be more

illuminating.
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A.8.9. Localizations of O-monoidal ∞-categories. Given an O-monoidal ∞-category C ∈ AlgO(Cat∞)
and a collection W of morphisms in C, the O-monoidal localization of C at W is (the target of) the
initial object of AlgO(Cat∞)C/ in which the morphisms in W are sent to equivalences. Of course, this
generalizes the notion of localization of ∞-categories discussed in Appendix A.2.5.

As an important special case, we say that a reflective localization (A.1) is compatible with a (sym-

metric) monoidal structure ⊗ := ⊗C on C if for all objects c, c′ ∈ C the morphism L(c ⊗ c′) L(ηc⊗ηc′ )−−−−−−→
L(RL(c) ⊗ RL(c′)) in D is an equivalence.59 In this case, D inherits a (resp. symmetric) monoidal
structure ⊗D, defined by the formula d⊗D d′ := L(R(d)⊗C R(d′)) for any d, d′ ∈ D and with unit ob-
ject 1D := L(1C),

60 and the left adjoint L is canonically (resp. symmetric) monoidal (so that the right
adjoint R is canonically laxly (resp. symmetric) monoidal). In this case, the left adjoint L witnesses D
as not just a localization but also a (resp. symmetric) monoidal localization of C.

A.8.10. Presentably O-monoidal ∞-categories. Given an ∞-operad O, a presentably O-monoidal ∞-
category is an O-monoidal∞-category C⊗ → O⊗ such that for every color X ∈ O the∞-category CX is
presentable and moreover for every multimorphism {Xi}i∈I → Y in O the corresponding multifunctor∏

i∈I CXi
→ CY is multi-cocontinuous (i.e. cocontinuous separately in each variable). This is equivalent

to the condition that C defines an O-algebra (PrL,⊗), and we write AlgO(Pr
L) ⊆ AlgO(Ĉat∞) for

the subcategory whose objects are the presentably O-monoidal ∞-categories whose morphisms are the
O-monoidal left adjoints among them.

Given a presentably O-monoidal ∞-category C ∈ AlgO(Pr
L), the ∞-category AlgO(C) is also pre-

sentable. Moreover, the functor (Op/O)
op

Alg(−)/O(C)
−−−−−−−−→ Ĉat∞ factors through PrR, i.e. for every mor-

phism A → B in OpO there exists a left adjoint

AlgA/O(C) AlgB/O(C)⊥ ,

the “free B-algebra on an A-algebra” functor [Lur17, Cor. 3.1.3.5]. Of course, these left adjoints then

assemble into a functor Op/O
Alg(−)/O−−−−−−→ PrL.

Warning A.8.1. Given a presentably symmetric monoidal ∞-category C and a small ∞-operad O,
the ∞-category AlgO(C) is presentable and carries a symmetric monoidal structure. However, it is
not necessarily presentably symmetric monoidal: The symmetric monoidal structure on AlgO(C) is not
necessarily compatible with finite coproducts (though it is always compatible with sifted colimits). An
easy counterexample is C = Set and O = E1.

A.8.11. Adjunctions of O-algebras. For an ∞-operad O, an O-monoidal left adjoint is an O-monoidal
functor F : C → D between O-monoidal ∞-categories such that for each color X ∈ O, the underlying
functor FX : C → D is a left adjoint.

An important fact which we use repeatedly is that given an O-monoidal left adjoint F , its right
adjoint G is canonically laxly O-monoidal [Lur17, Cor. 7.3.2.7]. Conversely, given a laxly O-monoidal
right adjoint, it is merely a condition for its left adjoint to be O-monoidal [Lur17, Cor. 7.3.2.12].
Moreover, such an adjunction determines an adjunction on O-algebra objects [Lur17, Rem 7.3.2.13],

59Even if ⊗C is a symmetric monoidal structure, this compatibility only depends on its underlying monoidal structure.
60An illustrative example is the completed tensor product of modules over a topological commutative ring (e.g. a

local commutative ring (R,m) equipped with the m-adic topology).
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whose adjoints both commute with the forgetful functors61, i.e., defines a morphism of adjunction:

(A.4)

AlgO(C) AlgO(D)

C D.

FO

GO

F

G

If C,D are symmetric monoidal∞-categories, and F : C → D is a symmetric monoidal left adjoint, then
the symmetric monoidal functor AlgO(F ) : AlgO(C)→ AlgO(D) is a symmetric monoidal left adjoint.

A.9. Module ∞-categories.

A.9.1. Left, right, and bimodules for associative algebras. We briefly review the theory of module ∞-
categories from [Lur17, § 4]. There are ∞-operads LM,RM and BM parametrizing pairs (a, am) of an
associative algebra object a along with a left module m over it, pairs (a,ma) of an associative algebra
with a right module, and triples (a, b, amb) of associative algebras a, b and a bimodule m between
them, respectively. Forgetting the module m gives rise to operad maps E1 → LM, E1 → RM and
E1 ⊔ E1 → BM.

An LM-monoidal∞-categoryM amounts to a monoidal∞-categoryMa together with a left module
∞-categoryMm over it. An LM-algebra in such an LM-monoidal ∞-category therefore consists of an
E1-algebra inMa together with a left module inMm. We denote the∞-category of LM-algebras inM
by LMod(M). Furthermore, pre-composing with the map E1 → LM induces a functor LMod(M) →
Alg(Ma). For an algebra A ∈ Alg(Ma), we denote the fiber of this functor at A by LModA(Mm),
and call it the∞-category of A-modules inMm. IfM is a presentably LM-monoidal∞-category, then
LModA(Mm) is also presentable [Lur17, Cor. 4.2.3.7].

Any monoidal ∞-category C can be considered a LM-monoidal ∞-category by setting Mm =Ma

with its canonical left module action. In this case, LModA(C) carries a canonical right action by C[Lur17,
§ 4.3.2], if C is further presentably monoidal this exhibits LModA(C) as an object in RModC(Pr

L).
We use analogous notation for RM and BM-monoidal ∞-categories and algebras; for example, in

a BM-monoidal ∞-category consisting of two monoidal ∞-categories Ma and Mb and an Ma–Mb

bimodule ∞-categoryMm, the fiber of BMod(M)→ AlgE1
(Ma)×AlgE1

(Mb) at an algebra A and B
is denoted ABModB(M) and is presentable ifM is a presentably BM-monoidal ∞-category.

A.9.2. The bar construction and relative tensor product of bimodules. We describe the relative tensor
product of bimodules in the presentably monoidal case, though the theory works much more generally.

Given bimodules AMB and BNC between algebras A,B,C in a monoidal ∞-category M the bar
construction defines a simplicial object Bar(M,B,N) ∈ ABModC(C) with Bar(M,B,N)n := M ⊗
B⊗nN with face and degeneracy maps given by multiplication, actions and the unit. The relative tensor
product ([Lur17, Prop. 4.4.2.14]) M ⊗B N is defined as the geometric realization of Bar(M,B,N) in

ABModC(C). IfM is a presentably monoidal ∞-category, this defines a functor in PrL:

−⊗B − : ABModB(C)⊗ BModC(C)→ ABModC(C).

For A = B = C, this induces a presentably monoidal structure on ABModA(C).

61Indeed, such data define an adjunction in the (∞, 2)-category AlgO(Cat∞)lax, to which we may apply

HomAlgO(Cat∞)(O ← OTriv,−).
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A.9.3. Module categories of commutative algebras. If C is a symmetric monoidal ∞-category and A
a commutative algebra in C, there is an equivalence LModA(C) ≃ RModA(C) treating the given left
action as a right action and vice versa. For this reason, we denote the ∞-category of modules of a
commutative algebra simply by ModA(C) and refer to it as the ∞-category of A-modules. Moreover,
treating an A-module as a bimodule induces a functor ModA(C) → ABModA(C). If C is presentably
symmetric monoidal, the relativ tensor product − ⊗A − defines a presentably monoidal structure on

ABModA(C). This lifts to a presentably symmetric monoidal structure on ModA [Lur17, Thm. 4.5.2.1].

A.10. Enriched ∞-categories. Our work makes crucial use of the theory of enriched ∞-categories
of [GH15], which we briefly review here. Given a monoidal ∞-category V, we write Cat[V] for the

(large) ∞-category of (small) V-enriched ∞-categories. Similarly, let Ĉat[V] be the (huge) ∞-category
of V-enriched ∞-categories with large spaces of objects.

We note from the outset that this formalism enjoys a convenient univalence property: the equiv-
alences in Cat[V] are precisely the (enrichedly) fully faithful and surjective functors. This may be
contrasted with the classical notion of an “equivalence of categories”, which is not generally an iso-
morphism in the ordinary category of ordinary categories since it is not generally an isomorphism on
objects. Of course, achieving this univalence requires an additional step, which is itself the imposition
of a univalence condition.62

Given a monoidal∞-category V, a categorical V-algebra C with space of objects X ∈ S heuristically

consists of a functor X×2 HomC(−,−)−−−−−−−→ V specifying hom-objects as well as an associative and unital
composition operation. These assemble into an ∞-category AlgCat[V]. Given a categorical V-algebra
C ∈ AlgCat[V] we generally write ι0C ∈ S for its space of objects, and the functor AlgCat[V]

ι0−→ S is a
Cartesian fibration (with Cartesian monodromy functors given by pulling back the hom-objects along
a map of spaces). If V is in fact symmetric monoidal, then AlgCat[V] admits a symmetric monoidal
structure as well [GH15, Cor. 5.7.12], with ι0(C ⊗ D) ≃ (ι0C) × (ι0D) and HomC⊗D((c, d), (c

′, d′)) ≃
HomC(c, c

′)⊗HomD(d, d
′).

Now, given a categorical V-algebra C ∈ AlgCat[V] we can extract a space C≃ ∈ S of equivalences
(with respect to its internal category theory), and this comes equipped with a morphism ι0C → C≃
from its space of objects (which heuristically sends each object to its identity morphism). A morphism
C → D in AlgCat[V] is surjective on objects if the induced map C≃ → D≃ is surjective (i.e. surjective
on π0). A morphism F : C → D in AlgCat[V] is fully faithful if for any two objects c, d ∈ C, the induced
map HomC(c, d)→ HomD(Fc, Fd) in V is an isomorphism in D.

We say that C is univalent if the morphism ι0C → C≃ is an equivalence; in essence, this is the
condition that its internally- and externally-defined spaces of objects coincide. Finally, a V-enriched
∞-category is a univalent categorical V-algebra. These define a full subcategory Cat[V] ⊆ AlgCat[V].
Furthermore, the inclusion has a left adjoint (i.e. a reflective localization), which we may refer to
as univalent completion, which exhibits Cat[V] as the localization of AlgCat[V] with respect to fully
faithful and essentially surjective functors [GH15, Thm. 2.4.11].

If we assume that V is symmetric monoidal, then the reflective localization is compatible with the
symmetric monoidal structure on AlgCat[V] in the sense of Appendix A.8.9. It follows that Cat[V]

62This theory is effectively a generalization of the theory of complete Segal spaces [Rez01], with the univalence being
obtained by restricting to those from all Segal spaces. In particular, using the terminology introduced just below, an
ordinary category in the classical sense (defined in terms of a set of objects) is equivalently a categorical Set-algebra

whose space of objects is discrete (or equivalently a Segal set). By contrast, an object of Cat[Set] ⊂ Cat[S] ≃ Cat∞
– equivalently, an ∞-category whose hom-spaces are all discrete – merely has a 1-truncated ∞-groupoid of objects, a

surjection to which from a set determines a presentation thereof as an ordinary category in the classical sense.



126 YU LEON LIU, AARON MAZEL-GEE, DAVID REUTTER, CATHARINA STROPPEL, AND PAUL WEDRICH

also inherits a symmetric monoidal structure, given by taking the tensor product in categorical V-
algebras and then univalently completing the result.63 By the same argument, Ĉat∞[V] also inherits a
symmetric monoidal structure.

If V is presentably monoidal, then both ∞-categories Cat[V] and AlgCat[V] are presentable [GH15,
Prop. 5.7.8]. If V is furthermore presentably symmetric monoidal, then so is Cat[V] [GH15, Prop.

5.7.16]. This assembles into a functor Cat[−] : CAlg(PrL)→ CAlg(PrL).

If V is presentably monoidal, there also exists a categorical suspension functor V Σ[−]−−−→ AlgCat[V]
[GH15, Def. 4.3.21], which is characterized by the universal property that morphisms Σ[V ] → C are
equivalent to a pair of objects c, d ∈ C and a morphism V → HomC(c, d) in V.64 We also simply write
Σ[−] for the composite V→ AlgCat[V]→ Cat[V], which has the same universal property in Cat[V].

63Beware that the functor Cat[V] ι0−→ S is not generally symmetric monoidal: for C,D ∈ Cat[V], the morphism

ι0(C ⊗AlgCat[V]D)→ ι0(L(C ⊗AlgCat[V]D)) =: ι0(C ⊗Cat[V]D) is generally not an equivalence. A simple example is given
by taking V = Ab to be the category of abelian groups, and taking C = BR and D = BS to be the one-object categorical
Ab-algebras associated to associative rings R and S. We have ι0(L(BR)) ≃ B(R×), and BR⊗AlgCat[Ab]BS := B(R⊗S),

but the canonical map R××S× → (R⊗S)× is generally not an isomorphism of sets. (For instance, if R and S are fields

of different characteristic, then R⊗ S = 0.)
64In general, a categorical V-algebra with space of objects X ∈ S has an underlying V-graph, i.e. a functor X×2 → V

(which encodes the hom-objects but not composition), and this forgetful functor has a left adjoint free functor (using
e.g. that V is presentably monoidal). Then, given an object V ∈ V, the categorical algebra Σ[V ] ∈ AlgCat[V] is free on

the V-graph with space of objects {0, 1} ∈ Set ⊂ S given by

(i, j) 7−→
{

V , (i, j) = (0, 1)

∅V , otherwise
.
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Appendix B. Factorization systems for enriched ∞-categories

As the terminology suggests, a factorization system on an ∞-category gives a functorial way of

factoring its morphisms. As a basic example, every morphism X
f−→ Y in the ∞-category of spaces

(and in particular in the category of sets) admits a factorization

X Y

Fact(f)

f

as a surjection followed by a monomorphism. In fact, every morphism of spaces admits a unique such
factorization. This uniqueness persists in the case of a general factorization system, arising from a
certain orthogonality relation that is required of the two factors.65

In this appendix, given a presentably monoidal ∞-category V, we prove as Theorem B.4.1 that a
factorization system on V that is compatible with its monoidal structure determines a factorization
system on the∞-categories Cat[V] of V-enriched∞-categories. In fact, we prove a more general result
as Theorem B.3.1: if V is presentably O-monoidal, under mild hypotheses we obtain a factorization
system on the ∞-category of algebras over any ∞-operad A equipped with a morphism A → O. We
use Theorem B.4.1 to obtain factorization systems on (∞, k)-categories (Theorem 5.3.7), on enriched
(∞, 2)-categories (Corollary 6.2.4), and on∞-operads (Proposition 7.5.3). Along the way, we establish
a number of useful results concerning factorization systems, some of which are also used in the main
body of the paper.

We begin in Appendix B.1 by recalling some basic definitions and properties of factorization systems,
including some convenient features that result from specializing to presentable ∞-categories. We then
proceed in Appendix B.2 to establish a number of ways of obtaining new factorization sytems from
old ones. We then prove our two main results Theorem B.3.1 (concerning algebras over ∞-operads) in
Appendix B.3 and Theorem B.4.1 (concerning enriched ∞-categories) in Appendix B.4.

B.1. Recollections on factorization systems.

B.1.1. Basics of factorization systems.

Definition B.1.1 ([Lur09, Def. 5.2.8.1]). Given morphisms a
l−→ b and c

r−→ d in an ∞-category, we
say that l is left orthogonal to r or that r is right orthogonal to l if for any solid commutative square

(B.1)

a c

b d

l r

the space of dashed lifts b→ c is contractible. In this situation, we may write l⊥r. More broadly, given
classes L and R of morphisms in an ∞-category, we write L⊥R to indicate that l⊥r for every l ∈ L
and every r ∈ R.
Example B.1.2. A morphism f in an ∞-category satisfies the relation f⊥f if and only if it is an
equivalence.

Observation B.1.3. Given an adjunction

C D
F
⊥
G

65As illustrated in Example B.1.8, this orthogonality relation may be seen as a sort of generalized coprimality re-
quirement on the factors.
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and morphisms f and g in C and D respectively, the orthogonality relations f⊥G(g) and F (f)⊥g are
equivalent. We use this fact without further comment.

Notation B.1.4. Given a class S of morphisms in an ∞-category, we write S⊥ (resp. ⊥S) for the
class of morphisms that are right (resp. left) orthogonal to those in S.

Definition B.1.5 ([Lur09, Def. 5.2.8.8]). A factorization system on an ∞-category C is a pair (L,R)
of classes of morphisms in C satisfying the following conditions.

(1) The classes L and R are stable under the formation of retracts (in Fun([1], C)).
(2) We have the orthogonality relation L ⊥ R.
(3) Every morphism c

f−→ d in C admits a factorization

c d

e

f

l r

with l ∈ L and r ∈ R.
We respectively write Catf.s.,L∞ , Catf.s.,R∞ , and Catf.s.,L,R

∞ for the∞-categories of∞-categories equipped
with factorization systems, in which a morphism is a functor that respectively preserves the left class,
the right class, or both classes.

Notation B.1.6. To simplify our notation, we take the following conventions when studying a class
S of morphisms in an ∞-category C.

(1) Assuming that S consists of precisely the morphisms in a subcategory of C (e.g. both classes
in a factorization system on C), we simply write S to denote this subcategory.

(2) Assuming that S is stable under homotopy (e.g. both classes in a factorization system on C),
we also simply write S to denote the full subcategory of Fun([1], C) on the morphisms in S.

(3) We simply write C≃ for the class of equivalences in C, and we simply write C for the class of
all morphisms in C.

(4) For any object c ∈ C, we write C/Sc ⊆ C/c for the full subcategory on those objects (d→ c) ∈ C/c
that lie in S (when considered as morphisms in C). In the special case that c ≃ ptC is terminal,
we simply write CS := C/SptC

.

Example B.1.7. For any ∞-category C, the pairs (C≃, C) and (C, C≃) define factorization systems on
C.
Example B.1.8. Let N× := {1, 2, 3, . . .}× denote the (commutative) monoid of natural numbers under
multiplication. Given two elements s, t ∈ N×, their corresponding morphisms in BN× satisfy s⊥t (and
thereafter t⊥s) if and only if s and t are coprime. From here, it is easy to check that e.g. the pairs
(powers of 2, odds) and (odds, powers of 2) define factorization systems on BN×. More generally, if
{2, 3, 5, . . .} = P1 ⊔ P2 denotes a two-element partition of the set of prime numbers, then

(powers of elements of P1, powers of elements of P2)

determines a factorization system on BN×, and moreover every factorization system on BN× arises in
this way.

Observation B.1.9. A factorization system (L,R) on an ∞-category is completely determined by
either L or R (since R = L⊥ and L = ⊥R). We use this fact without further comment.

Observation B.1.10. By [Lur09, Prop. 5.2.8.17], the factorization in part (3) of Definition B.1.5 is
unique. We often use this fact without further comment.
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Notation B.1.11. Justified by Observation B.1.10, given a morphism c
f−→ d in an ∞-category C

equipped with a factorization system (L,R), we write Fact(f) := Fact(L,R)(f) ∈ C for the unique
object through which f factors via the factorization system.

We introduce the following notion for future use.

Definition B.1.12. Let O be an ∞-operad and let C be an O-monoidal ∞-category. Suppose that
for every color X ∈ O, the ∞-category CX of X-colored objects in C is equipped with a factorization
system (LX ,RX). We say that the O-monoidal structure of C is compatible with these factorization
systems if for every n ≥ 0 and every n-ary operation (X1, . . . , Xn) → X in O, the corresponding
functor CX1 × · · · × CXn → CX carries morphisms in LX1 × · · · × LXn to morphisms in LX .66

B.1.2. Factorization systems on presentable ∞-categories. We now discuss factorization systems of
small generation on presentable ∞-categories. We then proceed to make some further observations
about factorization systems that admit specializations when applied to those of small generation.

For motivation, observe that both classes of a factorization system necessarily contain all equiv-
alences. As a result, both classes of a factorization system on a large ∞-category must be large.
However, on a presentable ∞-category one can define a factorization system in terms of a small set of
morphisms (which then generate the left class), as we now recall.

Definition B.1.13 ([Lur09, Def. 5.5.5.1]). We say that a class of morphisms S in an ∞-category C is
saturated if it satisfies the following conditions.

(1) The class S contains all equivalences and is closed under composition.67

(2) The full subcategory S ⊆ Fun([1], C) is closed under (small) colimits.
(3) The class S is stable under cobase change.

Proposition B.1.14 ([Lur09, Prop. 5.5.5.7]). Fix a presentable ∞-category C and a small set of
morphisms S in C. Then, there exists a factorization system (L,R) on C with R = S⊥. Moreover, L
is the smallest saturated class of morphisms in C that contains S. □

Definition B.1.15. In the context of Proposition B.1.14, we say that the factorization system (L,R)
(or simply the left class L) is of small generation, or more specifically that it is generated by S.
Moreover, we may write S for L. We define the subcategories

PrL,f.s.,L ⊂ Ĉat
f.s.,L
∞ and PrR,f.s.,R ⊂ Ĉat

f.s.,R
∞

to be those on the presentable∞-categories whose factorization systems are of small generation, whose
morphisms are respectively required to be left or right adjoints (in addition to preserving the indicated
class of the factorization system).

Example B.1.16. Fix any integer n ≥ −2. By [Lur09, Ex. 5.2.8.16], the ∞-category S of spaces ad-
mits a factorization system (n-connected, n-truncated),68 which is generated by the singleton {Sn+1 →
pt}.69

Observation B.1.17. Given an adjunction between∞-categories equipped with factorization systems,
the left adjoint preserves the left class if and only if the right adjoint preserves the right class. It follows
that passing to adjoints determines an equivalence PrL,f.s.,L ≃ (PrR,f.s.,R)op. We use these facts without
further comment.

66The data of an O-monoidal ∞-category equipped with compatible factorization systems is equivalent to that of

a functor O → Catf.s.,L∞ satisfying certain Segal conditions (as in Appendix A.8.3). (Observe that Catf.s.,L∞ admits

products, which are defined in the evident way.)
67Said differently, the morphisms in S are precisely those that lie in a wide subcategory of C.
68These notions are recalled in Section 5.2.
69In the case that n = −2 this recovers (S,S≃), and in the case that n = −1 this recovers (surjections,

monomorphisms).
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Lemma B.1.18. If C is a presentably O-monoidal category for a small operad O and suppose that for
every color X ∈ O, the presentable ∞-category CX is equipped with a factorization system (LX ,RX)
generated by a set SX . Then, the factorization systems are compatible with the O-monoidal structure if
and only if for every operation (X1, . . . , Xn)→ X in O, the corresponding functor CX1

×· · · CXn
→ CX

carries morphisms in SX1
· · · × · · ·SXn

to morphisms in LX .

Proof. Assume that CX1
× · · · CXn

→ CX carries morphisms in SX1
· · · × · · ·SXn

to morphisms in LX .
By assumption, the functor CX1

× · · · × CXn
→ CX preserves small colimits separately in all variables.

Since for every Y ∈ O, the class of morphisms LY is by Proposition B.1.14 the smallest saturated
class of morphisms in CY that contains SY , the functor CX1

× · · · × CXn
→ CX therefore also carries

morphisms in LX1
× · · · × LXn

to morphisms in LX . □

Observation B.1.19. Fix an ∞-category C with a factorization system (L,R).
(1) For any object c ∈ C, we obtain factorization systems on both Cc/ and C/c in which both classes

are pulled back from C via the respective forgetful functors.
(2) Suppose that C is presentable and that (L,R) is of small generation. Then, the factorization

systems of part (1) are both of small generation as well. Specifically, if S denotes a set of
morphisms in C that generates (L,R), then they are respectively generated by the evident
(small) spaces of morphisms indexed by

⊔

(a→b)∈S

HomC(c, a) and
⊔

(a→b)∈S

HomC(b, c) .

Observation B.1.20. Fix an ∞-category C with a factorization system (L,R).
(1) Assume that C contains a terminal object. Then, there exists a left adjoint

(B.2) C CR⊥

to the fully faithful inclusion, which is given by the formula c 7→ Fact(c→ ptC). Moreover, the
right adjoint is the inclusion of the L-local objects, and hence the left adjoint exhibits CR as
the localization C[L−1].70

(2) Assume that C is presentable and that (L,R) is generated by a set S of morphisms in C. Then,
the reflective localization (B.2) also identifies CR with the (accessible) localization C[S−1].

(3) Furthermore, if C has a symmetric monoidal structure compatible with the factorization system
and which has the terminal object as monoidal unit, then it induces a symmetric monoidal
structure on CR, for which the left adjoint C → CR is symmetric monoidal.

(4) Given a morphism (C0, (L0,R0))
F−→ (C1, (L1,R1)) in Catf.s.,L,R

∞ in which both C0 and C1 admit
terminal objects and F (ptC0

) ≃ ptC1
, the reflective localizations of part (1) assemble into a

morphism

C0 CR0
0

C1 CR1
1

⊥

F F

⊥

of adjunctions.

70However, beware that a morphism in C may be sent to an equivalence in CR even if it is not in L.
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B.2. Induced factorization systems. In this subsection, we record an assortment of useful results
that allow us to obtain new factorization systems from old ones, in roughly increasing order of com-
plexity. Specifically, we give sufficient conditions for inducing factorization systems on subcategories
(Observation B.2.1), on ∞-categories of functors (Lemma B.2.3), on the total ∞-categories of Carte-
sian fibrations (Lemma B.2.4), through reflective localizations (Lemma B.2.5), and through monadic
adjunctions (Lemma B.2.7).

We begin by recording necessary and sufficient conditions for a factorization system to restrict to a
subcategory.

Observation B.2.1. Let C be an ∞-category equipped with a factorization system (L,R), let C0 ⊆ C
be a subcategory, and let us write L0 := L ∩ C0 and R0 := R ∩ C0. Then, the pair (L0,R0) forms a
factorization system on C0 if and only if the following conditions are satisfied.

(1) For any solid commutative square (B.1) in C0 with l ∈ L and r ∈ R, the unique lift in C
(guaranteed by the orthogonality relation L⊥R) also lies in C0.

(2) For any morphism c
f−→ d in C0, both morphisms in the factorization c → Fact(L,R)(f) → d

also lie in C0.
In particular, if C0 is a full subcategory of C, then (L0,R0) forms a factorization system if and only

if Fact(L,R)(f) lies in C0 for any morphism f in C0.
Lemma B.2.2. Let C be an ∞-category equipped with a factorization system (L,R), let C0 ⊆ C be
a subcategory, and suppose that L0 := L ∩ C0 and R0 := R ∩ C0 fulfill conditions (1) and (2) of
Observation B.2.1, so that they induce a factorization system (L0,R0) on C0. Then we have:

(1) If C0 and C are presentable, (L,R) is of small generation, and the inclusion C0 → C admits a
left adjoint L : C → C0, then (L0,R0) is of small generation and L(L) ⊆ L0.

(2) If C0 and C are furthermore presentably O-monoidal for a small operad O, the left adjoint
L : C → C0 is O-monoidal, and (L,R) is of small generation and compatible with the O-
monoidal structure, then so is (L0,R0).

Proof. For (1), let L : C → C0 denote the left adjoint, let S be a generating set for L and define S0 to
be the set of C0-morphisms S0 := L(S). By adjunction, a morphism f in C0 is in S⊥

0 iff it is in S⊥ = R,
and hence that S⊥

0 = R ∩ C0, proving that (L0,R0) is generated by S0. L(L) ⊆ L0 follows from the
adjunction.

For (2), it follows from the proof of (1) that for everyX ∈ O, the class (L0)X is generated by (S0)X :=
LX(SX) where SX is a generating set for LX . Hence, to check that (L0,R0) is compatible with the O-
monoidal structure, it suffices by Lemma B.1.18 to show that for every operation (X1, . . . , Xn)→ X in
O, the induced functor (C0)X1×· · ·×(C0)Xn → (C0)X carries morphisms in LX1(SX1)×· · ·×LXn(SXn)
to a morphism in (L0)X . But since L is O-monoidal, such a family of morphism is carried to the image
under LX of their product in CX . Since L is compatible with the monoidal structure, that product is
in LX and hence the morphisms are carried to a morphism in LX(LX) ⊆ (L0)X . □

We now show that an∞-category of functors automatically inherits a factorization system from one
on the target.

Lemma B.2.3. Let C be an ∞-category equipped with a factorization system (L,R), and let I be a
small ∞-category.

(1) The∞-category Fun(I, C) admits a factorization system (LI ,RI), in which (as the exponential
notation suggests) a natural transformation between functors lies in LI (resp. RI) if and only
if its components all lie in L (resp. R).

(2) If C is presentable and (L,R) is of small generation, then Fun(I, C) is presentable and (LI ,RI)
is of small generation.
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(3) If O is a small operad, I is O-monoidal, C is presentably O-monoidal and (L,R) is compatible
with the O-monoidal structure on C, then (LI ,RI) is compatible with the Day convolution
O-monoidal structure on Fun(I, C).

Proof. Part (1) is a restatement of [Lur09, Cor. 5.2.8.18]. To prove part (2), assume that C is pre-
sentable and let S be a set of morphisms in C that generates L. We note first that Fun(I, C) is

presentable by [Lur09, Prop. 5.5.3.6]. Now, for each functor pt
i−→ I (selecting an object of I) we

obtain an adjunction

C Fun(I, C)
i!
⊥
i∗

.

It follows that RI is precisely the right orthogonal to the (small) space of morphisms

S′ :=
⊔

i∈ι0I

⊔

f∈S

i!(f)

in Fun(I, C). From here, Proposition B.1.14 implies that (LI ,RI) is generated by S′ (and in particular
that LI is the smallest saturated class of morphisms containing S′).

For part (3), given an n-ary operation (X1, . . . , Xn)→ X in O, the induced functor Fun(IX1 , CX1)×
· · · × Fun(IXn

, CXn
) → Fun(IX , CX) is computed as the left Kan extension of IX1

× · · · × IXn
→

CX1
× · · · × CXn

→ CX against IX1
× · · · × IXn

→ IX . As the left class of a factorization system, L is
closed under colimits in C. Therefore, the image of natural transformations fi ∈ Fun(IXi

, CXi
) which

are componentwise in L will again be componentwise in L. □

A simple example of a factorization system arises from a Cartesian fibration E p−→ B: the total
∞-category E admits a factorization system (L,R) in which L = p−1(B≃) and R consists of the
p-Cartesian morphisms. This can be generalized as follows.

Lemma B.2.4. Fix an ∞-category B and a functor Bop F−→ Ĉat
f.s.,R
∞ (recall Definition B.1.5). For

each b ∈ B, let us write (Lb,Rb) for the given factorization system on F (b). Moreover, let us write

E p−→ B for the Cartesian fibration associated to F .

(1) The ∞-category E admits a factorization system (L,R), described as follows.

(a) A morphism e
α−→ f lies in L if and only if the morphism p(e)

p(α)−−−→ p(f) in B is an
equivalence and moreover the morphism e→ p(α)∗(f) in Ep(e) ≃ F (p(e)) lies in Lp(e).

(b) A morphism e
α−→ f lies in R if and only if the morphism e→ p(α)∗(f) lies in Rp(e).

(2) Suppose that B is small and that F factors through the subcategory PrR,f.s.,R ⊂ Ĉat
f.s.,R
∞ (recall

Definition B.1.15). Then, the factorization system of part (1) is also of small generation.
More specifically, if for each b ∈ B the set Sb generates the class Lb, then the set S :=

⊔
b∈B Sb

generates the class L (considering each Sb as defining a set of morphisms in the fiber Eb ≃ F (b)).
Proof. Part (1) is straightforward. Thereafter, for part (2) it suffices to show that R = S⊥ (so that
(L,R) is indeed the factorization system generated by S via Proposition B.1.14). The containment
R ⊆ S⊥ follows from the fact that the Cartesian monodromy functors preserve the right classes, while
the containment R ⊇ S⊥ follows from the explicit description of R. □

We now provide sufficient conditions for descending a factorization system through a reflective
localization.

Lemma B.2.5. Suppose that

C D
L
⊥
R
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is a reflective localization and that (L,R) is a factorization system on C. Suppose further that L(L) is
stable under retracts and that RL(R) ⊆ R.

(1) The pair (L(L), L(R)) forms a factorization system on D, in which the factorization of a

morphism d
f−→ d′ is given by the lower composite in the commutative diagram

(B.3)

d d′

LR(d) LR(d′)

L(Fact(R(f))

f

∼
LR(f)

∼

.

Moreover, considering D as a full subcategory of C (via R), the right class L(R) is intersected
from R (i.e. we have RL(R) = R∩R(D)).

(2) Suppose further that C and D are presentable and that (L,R) is generated by a set S of mor-
phisms in C. Then, (L(L), L(R)) is generated by the set L(S) of morphisms in D.

(3) Suppose that C is (symmetric) monoidal compatible with both the reflective localization (recall
Appendix A.8.9) and with the factorization system (recall Definition B.1.12). Then, the induced
(symmetric) monoidal structure on D is compatible with the factorization system (L(L), L(R)).

Warning B.2.6. Although the right adjoint to a reflective localization is (by definition) the inclusion
of a full subcategory, the factorization system given by Lemma B.2.5.(1) is generally not the same as
that of Observation B.2.1. More specifically, although its right class is simply the restriction of the
larger right class, its left class is not generally the restriction of the larger left class: using the notation
of Lemma B.2.5, although we do have RL(R) = R∩R(D), in general RL(L) and L∩R(D) are distinct.
Indeed, by Observation B.2.1, these factorization systems coincide if and only if for every morphism f
in D the object Fact(L,R)(R(f)) ∈ C lies in the image of R.71

Proof of Lemma B.2.5. We begin with part (1).
Note first that in diagram (B.3), the lower diagonal morphisms respectively lie in L(L) and L(R),

so this is indeed a factorization of the desired type.
Next, L(L) is stable under retracts by assumption. To see that L(R) is also stable under retracts,

consider a retract g in Fun([1],D) of some L(f) ∈ L(R). Applying R, we find that R(g) is a retract
in Fun([1], C) of RL(f) ∈ RL(R). Since by assumption RL(R) ⊆ R, it follows that RL(f) ∈ R, and
hence R(g) ∈ R since R is stable under retracts. It follows that g ≃ LR(g) ∈ L(R), as desired.

We now verify the orthogonality relation L(L)⊥L(R). For this, given any f ∈ L and any g ∈ R,
we must show that L(f)⊥L(g). By adjunction, this is equivalent to showing that f⊥RL(g). But by
assumption we have RL(g) ∈ RL(R) ⊆ R, and so the claim follows from the fact that L⊥R.

We now verify both containments that together constitute the claim that RL(R) = R∩R(D). First
of all, by assumption we have RL(R) ⊆ R, and moreover clearly L(R) ⊆ D and hence RL(R) ⊆ R(D).
So indeed, we have RL(R) ⊆ R ∩R(D). In the other direction, consider an arbitrary element R(f) ∈
R ∩ R(D). In particular we have R(f) ∈ R, so LR(f) ∈ L(R), so R(f) ≃ RLR(f) ∈ RL(R). So
indeed, we have RL(R) ⊇ R ∩R(D).

71Notably, we do not generally have this coincidence in a case of primary interest for us, namely the reflective

localization from categorical V-algebras to V-enriched∞-categories (see Theorem B.4.1 and Lemma B.4.3). Rather, given
a morphism of V-enriched ∞-categories, if we consider it as a morphism of categorical V-algebras then its factorization

will have the same underlying space as the source, but this will generally not be univalent. (In this case, RL(L) consists
of the surjective functors between V-enriched ∞-categories that are homwise in L, whereas L ∩ R(D) consists of the
ι0-equivalences between V-enriched ∞-categories that are homwise in L.)
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We now prove part (2). By Proposition B.1.14, it suffices to show that L(R) = L(S)⊥. To verify
the containment L(R) ⊆ L(S)⊥, it is equivalent by adjunction to check that RL(R) ⊆ S⊥, and this
follows from the fact that RL(R) ⊆ R = S⊥. To verify the containment L(R) ⊇ L(S)⊥, we observe
that for any f ∈ L(S)⊥, by adjunction we have R(f) ∈ S⊥ = R, so indeed f ≃ LR(f) ∈ L(R).

We conclude by proving part (3). Note that it suffices to prove the claim in the monoidal case. And
here, the claim follows from the observation that

L(L)⊗D L(L) := L(RL(L)⊗C RL(L)) ≃ L(L ⊗C L) ⊆ L(L) ,
in which the equivalence and the containment respectively follow from the compatibilities of the reflec-
tive localization with the monoidal structure ⊗C and with the factorization system (L,R). □

We now turn to our final auxiliary result, which gives sufficient conditions for inducing a factorization
system through a monadic adjunction.

Lemma B.2.7. Fix a monadic adjunction

C D := TMod(C)
F
⊥
U

between presentable ∞-categories (where T := UF denotes the underlying monad). Suppose that (L,R)
is a factorization system on C of small generation, and suppose further that T commutes with geometric
realizations and preserves L. Then, D admits a factorization system (L′,R′) of small generation, where
L′ = U−1(L) and R′ = U−1(R).

Furthermore, assume that C, D are presentably O-monoidal for a small ∞-operad O, and the left
adjoint C → D is O-monoidal. If the O-monoidal structure on C is compatible with the factorization
system, then the O-monoidal structure on D is compatible with the induced factorization system on D.
Proof. We begin by fixing a small set S of morphisms in C that generates L. By Proposition B.1.14,
we obtain a factorization system (L′,R′) on D generated by its image F (S). So, it remains to show
that L′ = U−1(L) and that R′ = U−1(R).

We first show that R′ = U−1(R). For this, note that by definition R′ = F (S)⊥. Hence, it suffices
to show that a morphism lies in F (S)⊥ precisely if its image under U lies in R, which follows from the
adjunction F ⊣ U (and the fact that R = S⊥).

We now show that L′ = U−1(L). For this, let us write L′′ := U−1(L), so that our goal is to show

that L′ = L′′. Since L′ = F (S), it is equivalent to show that F (S) = L′′. In other words, it suffices to
verify that L′′ is the smallest saturated class of morphisms in D that contains F (S).

We deduce this in steps. First of all, the fact that L′′ contains F (S) follows from the assumption
that the monad T preserves L and the fact that L contains S.

We now show that L′′ is saturated by verifying the conditions of Definition B.1.13.
Condition (1) is clear: L′′ defines a wide subcategory of D.
We now verify condition (2), i.e. we show that the full subcategory L′′ ⊆ Fun([1],D) is closed under

small colimits. For this, fix a small ∞-category I as well as a functor I X−→ Fun([1],D) that factors
through L′′. We wish to show that the colimit colimI(X) (computed in Fun([1],D)) also lies in L′′, i.e.
that U(colimI(X)) ∈ Fun([1], C) lies in L. Now, since the adjunction F ⊣ U is monadic, every object
D ∈ D admits a functorial bar resolution: it is the geometric realization of the levelwise free simplicial
object FT •U(D) ∈ Fun(∆op,D) [Lur17, Prop. 4.7.3.14]. Using this, we may compute colimI(X) as
the colimit of the functor

I ×∆op Fun([1],D)

∈ ∈

(i, [n]) FTnU(X(i))

X′

.
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Namely, we obtain the string of equivalences

U(colimI(X)) ≃ U(colimI×∆op(X ′))

≃ U(colim[n]∈∆op(colimi∈I(X
′(i, [n]))))

≃ colim[n]∈∆opU(colimi∈I(X
′(i, [n])))

=: colim[n]∈∆opU(colimi∈I(FT
nU(X(i))))

≃ colim[n]∈∆opUF (colimi∈I(T
nU(X(i))))

=: colim[n]∈∆opT (colimi∈I(T
nU(X(i)))) ,

in which the third equivalence follows from the fact that U commutes with geometric realizations since
T does by [Lur17, Cor. 4.2.3.5]. Now, by definition of L′′ := U−1(L), for each object i ∈ I the
object U(X(i)) ∈ Fun([1], C) lies in L. Using repeatedly both the fact that T preserves L and that
L ⊆ Fun([1], C) is closed under colimits, we find that U(colimI(X)) ∈ Fun([1], C) lies in L, as desired.
So indeed, L′′ ⊆ Fun([1],D) is closed under colimits.

The verification of condition (3) (that L′′ ⊆ Fun([1],D) is stable under cobase change) follows from
an essentially identical argument (inasmuch as it involves the computation of a colimit (specifically a
pushout) in Fun([1],D)). So indeed, the class L′′ of morphisms in D is saturated.

In order to conclude that L′′ = F (S), it therefore remains to show that any saturated class L′′′ of
morphisms in D that contains F (S) also contains L′′. Since F preserves colimits, certainly F (L) ⊆
L′′′. From here, to show the containment L′′ ⊆ L′′′, choose any f ∈ L′′ := U−1(L). Recall that
the aforementioned bar resolution yields an equivalence |FT •U(f)| ≃ f . Note that U(f) ∈ L, and
since T preserves L then TnU(f) ∈ L, and so all values of the simplicial object FT •U(f) lie in
F(L) ⊆ Fun([1],D). Hence, its geometric realization – namely, f – must lie in L′′′. So indeed, L′′ is
the smallest saturated class of morphisms in D containing F (S).

It remains to prove the compatibility withO-monoidal structure. Given an operation (a1, ..., am)→ b
in O, we want to show that the induced functor µ : Da1

×· · ·×Dam
→ Db carries L′

a1
×· · ·×L′

am
to L′

b.
Explicitly, given morphisms Xi : [1]→ Dai

in L′
ai
, we would like to show that U(µ(X1, · · · , Xm)) ∈ L.

As above, the bar resolution gives us a simplicial object X ′
i : ∆

op → Fun([1],Dai) for each 1 ≤ i ≤ n,
with X ′

i([n]) = FTnU(Xi).
We have a string of equivalences:

(B.4)

U(µ(X1, · · · , Xn)) ≃ U(µ(colim[n1]∈∆opX ′
1([n1]), · · · , colim[nm]∈∆opX ′

m([nm])))

≃ U(colim([n1],··· ,[nm])∈(∆op)mµ(X
′
1([n1]), · · · , X ′

m([nm])))

≃ U(colim[n]∈∆opµ(X ′
1([n]), · · · , X ′

m([n])))

≃ colim[n]∈∆opU(µ(X ′
1([n]), · · · , X ′

m([n])))

≃ colim[n]∈∆opU(µ(FTnU(X1), · · · , FTnU(Xm)))

≃ colim[n]∈∆opUF (µ(TnU(X1), · · · , TnU(Xm)))

≃ colim[n]∈∆opT (µ(TnU(X1), · · · , TnU(Xm))) ,

in which the third line uses the fact that the diagonal ∆op in (∆op)
n
is cofinal, which is equivalent to

the statement that ∆op is sifted [Lur17, Def. 5.5.8.1, Lem. 5.5.8.4]. For 1 ≤ i ≤ n, U(Xi) ∈ L by
asssumption. It follows that TnU(Xi) is also in L. Since the O-monoidal structure on C is compatible
with the factorization system and T preserves L, we see that T (µ(TnU(X1), · · · , TnU(Xm))) is in L.
The result now follows from (B.4) and the fact that L is closed under colimits. □

B.3. Factorization systems for algebras over ∞-operads. We now prove the first main theorem
of this appendix, which gives factorization systems for algebras over ∞-operads.
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Theorem B.3.1. Fix a small∞-operad O such that O ≃ pt and a presentably O-monoidal∞-category
C equipped with a compatible factorization system (L,R) of small generation.

(1) For any A ∈ Op/O, the presentable ∞-category AlgA/O(C) admits a factorization system

(LA,RA) of small generation with LA = U−1(LA) and RA = U−1(RA), where we write

AlgA/O(C)
U−→ Fun(A, C) for the forgetful functor and (as the exponential notation suggests

(and as in Lemma B.2.3)) a morphism in Fun(A, C) lies in LA (resp. RA) if and only if its
components all lie in L (resp. R).

(2) Fix a morphism A → B in Op/O. Then, in the adjunction

AlgA/O(C) AlgB/O(C)
FB

A

⊥
UB

A

we have FB
A(LA) ⊆ LB and UB

A(RB) ⊆ RA (using the notation of part (1)). In particular, the
factorization systems of part (1) determine a lift

(B.5)

PrR,f.s.,R

(Op/O)
op PrR

fgt

Alg(−)/O(C)

through the indicated forgetful functor.
(3) The total ∞-category of the Cartesian unstraightening of the horizontal functor in diagram

(B.5) admits a factorization system (LAlg,RAlg) of small generation, described as follows: an

arbitrary morphism (A ∈ AlgA/O(C))
α̃−→ (B ∈ AlgB/O(C)) therein is specified by its image

A α−→ B in Op/O along with a morphism A→ α∗B in AlgA/O(C), and
(a) it lies in LAlg if and only if α is an equivalence and moreover for every color X ∈ A the

morphism AX → (α∗B)X in C lies in L, and
(b) it lies in RAlg if and only if for every color X ∈ A the morphism AX → (α∗B)X in C lies

in R.
(4) In the case that O = E∞ and C is a presentably symmetric monoidal ∞-category with a com-

patible factorization system, AlgA(C) has a canonical symmetric monoidal structure 72 (see
Appendix A.8.5). The factorization system (LA,RA) defined above is compatible with the sym-
metric monoidal structure.

Proof. We begin with part (1).
First of all, observe the equivalences and the adjunction

(B.6) Fun(A, C) ≃ Fun/O(A, C) ≃ AlgATriv/O(C) AlgA/O(C).
F :=FA

ATriv

⊥
U :=UA

ATriv

Lemma B.2.3 furnishes the factorization system (LA,RA) of small generation on Fun(A, C). Hence,
we prove part (1) by applying Lemma B.2.7, whose hypotheses it remains to show are satisfied.

We first show that the adjunction (B.6) is monadic and that its underlying monad preserves geo-
metric realizations. For monadicity, by [Lur17, Thm. 4.7.0.3] it suffices to show that U is conservative
and preserves sifted colimits. The former follows from [Lur17, Lem. 3.2.2.6], while the latter follows
from [Lur17, Prop. 3.2.3.1]. Of course, F preserves geometric realizations (being a left adjoint), and
so the monad T := UF preserves geometric realizations as well.

72Which may not be presentably symmetric monoidal, see Warning A.8.1.
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We now claim that this monad T preserves LA. This follows from the explicit description of the free
algebra functor as an operadic left Kan extension (see particularly [Lur17, Props. 3.1.1.15, 3.1.1.16,
and 3.1.1.20]). So indeed, the hypotheses of Lemma B.2.7 are satisfied, and we obtain a factorization
system (LA,RA) of small generation on AlgA/O(C) as asserted.

For part (2), it suffices to note that the containment UB
A(RB) ⊆ RA follows directly from the

commutative square

ATriv BTriv

A B
in Op/O.

With parts (1) and (2) in hand, part (3) follows from Lemma B.2.4.
Lastly, part (4) follows from part (1) and the fact that the forgetful functor U : AlgA(C)→ AlgATriv

(C) =
Fun(A, C) is symmetric monoidal (see Appendix A.8.5). □

B.4. Factorization systems for enriched ∞-categories. We now prove the second main theorem
of the appendix, which gives factorization systems for enriched ∞-categories (using those for algebras
over ∞-operads).

Theorem B.4.1. Let V be a presentably monoidal∞-category equipped with a compatible factorization
system (L,R).

(1) The∞-category Cat[V] of V-enriched∞-categories admits a factorization system (LCat,RCat),
described as follows.
(a) A morphism lies in LCat if and only if it is surjective on objects (i.e. ι0-surjective) and

lies in L homwise.
(b) A morphism lies in RCat if and only if it lies in R homwise.

(2) If S is a set of generators for L, then the localization of Σ[S] is a set of generators for LCat.
(3) If V is symmetric monoidal, then this factorization system is compatible with the resulting

symmetric monoidal structure on Cat[V].
Remark B.4.2. Theorem B.4.1 generalizes the (fully faithful, essentially surjective) factorization
system on enriched ∞-categories established by Haugseng in the recent work [Hau23] (without any
presentability assumptions).

Before we prove Theorem B.4.1, let us first consider factorization systems on categorical algebras:

Lemma B.4.3. Fix a presentably monoidal ∞-category V equipped with a compatible factorization
system (L,R).

(1) The∞-category AlgCat[V] of categorical V-algebras admits a factorization system (LAlgCat
,RAlgCat

),
described as follows.
(a) A morphism lies in LAlgCat

if and only if it is an ι0-equivalence and it lies in L homwise.
(b) A morphism lies in RAlgCat

if and only if it lies in R homwise.
(2) If S is a set of generators for L, then Σ[S] := {Σ(s)}s∈S is a set of generators for LAlgCat

.
(3) If V is symmetric monoidal, then the factorization system (LAlgCat

,RAlgCat
) is compatible with

the resulting symmetric monoidal structure on AlgCat[V].

Proof. By definition, the Cartesian fibration AlgCat[V]
ι0−→ S is the unstraightening of a composite

functor

Sop codisc−−−−→ (Op/E1
)op

Alg(−)/E1 (V)−−−−−−−−→ PrR .73

73See [GH15, Def. 4.3.1], and note that that nonsymmetric (a.k.a. planar) ∞-operads are equivalent to ∞-operads
over E1 by [Lur17, Thm. 4.1.3.14].
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For a space X ∈ S, its corresponding ∞-operad codisc(X) ∈ Op/E1
has space of colors given by

pairs of points x, y ∈ X (up to a symmetrization (i.e. the quotient by the S2-action) coming from
[Lur17, Thm. 4.1.3.14]), and a categorical V-algebra C with space of objects X assigns to these the
hom-object HomC(x, y) ∈ V. Hence, checking conditions on morphisms in V colorwise over codisc(X)
indeed corresponds to checking conditions on morphisms homwise, and thereafter part (1) follows by
combining Theorem B.3.1.(3) and Lemma B.2.4.

Thereafter, part (2) follows from the observation that (Σ[S])⊥ = RAlgCat
, which is immediate from

the universal property of Σ[−].
Lastly, part (3) follows from the assumption that (L,R) is compatible with the monoidal structure

of V. □

Proof of Theorem B.4.1. Given the factorization system on AlgCat[V] of Lemma B.4.3, we wish to
apply Lemma B.2.5 to the reflective localization

AlgCat[V] Cat[V]
L
⊥
U

.

We note preliminarily that the morphisms in Cat[V] that are localizations of ι0-equivalences in AlgCat[V]
are precisely the ι0-surjections.

We first show that the hypotheses of Lemma B.2.5 are satisfied. To show that RL(RAlgCat
) ⊆

RAlgCat
, we simply observe that if a morphism F in AlgCat[V] is homwise in R then so is its localization

L(F ) and hence so is RL(F ). To show that L(LAlgCat
) is stable under retracts, it suffices to observe

that L is stable under retracts (by definition of a factorization system) and that surjections in S are
stable under retracts (since surjections in Set are).

From here, the three parts of Lemma B.2.5 respectively imply the three parts of the present result.
□
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